

United States Department of Agriculture

Natural Resources Conservation Service Subject: ENG - Phase I Soil Mechanics Report

Plum Creek Site 6 Hays County, Texas Date: JUL 2 1 2014

National Design, Construction, and Soil Mechanics

501 W. Felix, Bldg. 23 Fort Worth, Texas 76115

Center

To: John Mueller, P.E.

State Conservation Engineer

NRCS, Temple, TX

File Code: 210-22

Job No: 7420

Phone: 817,509,3204 Fax: 817,509,3209

INTRODUCTION

The phase I Soil Mechanics Report is a summary of test results from the site investigation prior to 2010. At that time the investigation concentrated on the rehabilitation of the current Auxiliary spillway and existing principal spillway. The Phase II Soil Mechanics Report will address any geotechnical concerns with the embankment and the proposed structural spillway as the phase II testing results is completed. The geotechnical analysis associated with this report is considered preliminary as more information comes available in the next phase.

The Plum Creek Site 6 Dam is an existing earthen embankment in Hays County and is located within the Black Prairie Physiographic Area. It was constructed in 1966 as a low hazard flood retarding dam with a reinforced concrete intake structure feeding a 30-inch diameter reinforced concrete principal spillway pipe. The 350-foot wide by 1500-foot long auxiliary spillway is at the east abutment and has a county road traversing the terminus. Due to this roadway and the development downstream this 48-year old structure is being upgraded from low to high hazard classification. A recent hydrological event was captured with Google imagery and shows many structures adjacent to the pool of this structure with very little freeboard as it relates to the auxiliary spillway crest of the dam. Geologic investigations were performed and a Geologist's Report along with plotted logs, and information for the proposed design measures were evaluated.

The Supplemental Watershed Plan and Environmental Assessment for this project identified the features as: 'Rehabilitation of the site will require the following modifications to the structure: install a 175 foot length labyrinth weir (replaces existing auxiliary spillway) over the top of the dam, replace the existing principal spillway inlet structure with a new intake tower: install a new 42" pipe and fill the existing pipe with grout: install a new impact basin at the outlet: and install a foundation drain system along the back toe of the embankment. The auxiliary spillway (weir) crest elevation will be lowered 1.6 feet, and the east end of the dam will be extended about 350 feet. Goforth Road below the dam will be modified to accommodate construction activities.'

Nine undisturbed Shelby tube samples and four small soil samples were submitted from the Plum Creek Site 6 embankment dam for soil mechanics testing. Six of the undisturbed Shelby tube samples were taken from the auxiliary spillway, one from the principal spillway outlet basin, and two from the downstream toe near the principal spillway pipe. The remaining four small soil

samples came from three of the boring holes in the auxiliary spillway. The index properties of all the submitted samples are summarized on Form SCS-ENG-354 in Attachment 1. The undisturbed sample characteristics and photos are included in Attachment 2.

The depth to water along the downstream toe at the time of the investigation varied four-feet from 614.35 feet elevation to 610.25 feet elevation, and was within one and one-half feet from the downstream embankment toe surface at station 15+10.

The as-built drawings for this structure identified a zoned construction earth embankment with two zones of fill material. The center zone of fat clay (CH) was sole sourced from the auxiliary spillway borrow and was to be compacted to 85 percent of Maximum dry density according to the Modified Proctor ASTM D1557 Method A. The exterior upstream and downstream zones were to be claystone sole sourced from the auxiliary spillway borrow and were to be compacted by method specification. The laboratory test data listed in the as-built drawings are as listed in the following table:

Embankment	Average	e Depth,	USCS		Laborator	y Test Dat	a	
Zone No.	Feet			ASTM To	ASTM Test			Optimum
	From	То		Number	Method	No.	Dry	
1 or 2	0	5	СН	1557	A	1	117.5	14
2	5	8	Claystone	1557	A	2	116.0	14.5
2	9	grade	Claystone	1557	A			

Zone 1 was identified as the central core and extended from the cutoff trench on approximately a one to one side slope to the top of the embankment dam.

Also, the upstream side slope of this structure was repaired five-years after construction. Apparently the 2.5 to 1 side slope was not stable with the pool fluctuating above 620 feet elevation and the upstream face of the dam of the dam was reinforced with eighteen inches of rock riprap. The gradation was specified as W_{50} forty (40) pounds rock riprap with the maximum gradation being four hundred (400) pounds. The upstream berm was also lowered two-feet to 618 feet elevation and was reduced to a ten-foot width with the material removed to accommodate the rock riprap wasted upstream to further flatten the side slope. The rock riprap extended up the slope to elevation 630.5 feet elevation. This elevation placed it eight (8) feet below the auxiliary spillway crest of 638.5 feet elevation.

SOIL MECHANICS TESTING

Index Properties and Classification

Index data, classification based on the Unified Soil Classification System (USCS), dispersion data, and compaction test results are summarized in tabular form in Attachment 1. Undisturbed sample characteristics are summarized in Attachment 2 for the undisturbed samples.

Sample F10-1409/ Field Sample 301.1, from the principal spillway pipe outlet basin, classifies as fat clay (CH) according to the Unified Soil Classification System (USCS). It consists of 54 percent clay, 45 percent silt, and 1 percent sand. This sample is highly plastic with a Liquid Limit (LL) value of 77 and Plasticity Index (PI) of 53.

Sample F10-1410/ Field Sample 803.1, from the downstream toe at approximately station 15+88, classifies as fat clay (CH) according to the Unified Soil Classification System (USCS). It consists of 43 percent clay, 44 percent silt, and 13 percent sand. This sample is highly plastic with a Liquid Limit (LL) value of 52 and Plasticity Index (PI) of 30.

Sample F10-1411/ Field Sample 802.1, from the downstream toe at approximately station 14+70, classifies as fat clay (CH) according to the Unified Soil Classification System (USCS). It consists of 47 percent clay, 47 percent silt, and 6 percent sand. This sample is highly plastic with a Liquid Limit (LL) value of 59 and Plasticity Index (PI) of 43.

The remaining soil samples were from the nearside radius toe of the auxiliary spillway. When they were sampled it was not known if the existing auxiliary spillway was going to be expanded and this data was needed for possible SITES analysis. The auxiliary spillway samples were all classified as fat clay (CH) soil.

Index properties of the samples are shown in Attachment 1 on form SCS-ENG-354 and are summarized in the table below.

	Field	% Passing	% Passing				As-
Lab Sample	Sample Number	2 Microns	#200 Sieve	LL	ΡΙ	USCS	Received
Number	Number	(0.002mm)	#200 Sieve	LL	LI	USCS	W _n (%)
F10-1399	201.1	48	100	58	36	СН	16.4
F10-1400	201.2	54	100	70	46	СН	20.7
F10-1401	201.3	59	100	63	41	СН	22.6
F10-1402	202.1	54	100	70	47	СН	21.5
F10-1403	202.2	54	100	70	47	СН	22.4
F10-1404	202.3	35	100	68	45	СН	21.9
F10-1405	202.4	59	100	59	36	СН	22.1
F10-1406	202.5	36	96	64	40	СН	21.3
F10-1407	203.1	62	97	69	42	СН	22.3
F10-1408	203.2	52	100	63	39	СН	27.5
F10-1409	301.1	54	99	77	53	СН	28.6
F10-1410	803.1	43	87	52	30	СН	22.9
F10-1411	802.1	47	94	59	43	СН	28.0

A. SHEAR STRENGTH

Historical soil test data from the Plum Creek Watershed was utilized due to the lack of soil data for the embankment fill. This historical data supplemented the triaxial shear test data for the foundation, as shown in Attachment 3.

B. CONSOLIDATION

Due to the lack of soil data for the embankment fill and foundation, historical soil testing data from the Plum Creek Watershed was utilized to estimate a total settlement of 0.3 feet for the extension of the embankment dam through the existing auxiliary spillway to approximately five feet above existing grade. Due to the overburden removed to install the auxiliary spillway this would apply to the inside radius of the auxiliary spillway and to a lesser degree as the embankment extends east of this point. The only other embankment work that has been identified is the removal of a section of the embankment dam near station 13+40 to 15+40 approximately five feet high and replacing it with a reinforced concrete labyrinth weir, and extending the embankment dam through the existing auxiliary spillway. None of this work should have an impact on the consolidation of the existing foundation other than the retaining walls at the ends of the labyrinth weir and the foundation of the new principal spillway intake structure. Preliminary calculations and historical Plum Creek Watershed data is presented in Attachment 4.

C. DISPERSION

Double hydrometer and crumb tests were performed on the soil samples with significant clay content. Double hydrometer results of about 60 or higher and crumb ratings of 3 or 4 indicate that clay particles may have dispersive characteristics. The clay portion of the soil samples from this site that have been tested do not have dispersive clay characteristics.

Lab Sample Number	% Dispersion	Crumb
F10-1399	5	1/1
F10-1400	1	1/1
F10-1401	11	1/1
F10-1402	6	1/1
F10-1403	5	1/1
F10-1404	5	1/1
F10-1405	11	1/1

F10-1406	1	1/1
F10-1407	13	1/1
F10-1408	7	1/1
F14-1409	7	1/1
F14-1410	6	1/1
F14-1411	6	1/1

ENGINEERING ANALYSIS

A. SETTLEMENT

There are no current plans to raise the top of dam or flatten the upstream or downstream slopes; therefore, no settlement determination other than the extension through the auxiliary spillway needs to be considered.

It has been NRCS experience that a significant portion of the overall settlement and much of the settlement expected in the earthfill occurs during construction.

B. SEEPAGE

No seepage has been documented in the existing structure and is unlikely to exceed the established phreatic surface for the pool of 620 feet elevation. No embankment soil samples were submitted, but the downstream samples and temporary downstream bore holes indicate that the foundation is moist. Fracturing in the clay stone foundation materials are more likely to convey water than seepage through the compacted embankment. A downstream toe drain is planned for this rehabilitation.

Gradation of the proposed drainage materials is governed by the National Engineering Handbook (NEH) Part 633, Chapter 26, Gradation Design of Sand and Gravel Filters. All of the soil test data indicates that the soil will be classified as Category 1 with more than 85 percent passing the # 200 sieve per this standard.

C. SLOPE STABILITY

Slope stability analysis was evaluated using GeoStudio Slope W software and the Spenser method. Because the foundation beneath the dam has been loaded for forty-eight years and the compacted earth fill is not being significantly loaded to develop pore pressure within the fill, the effective shear values were utilized in the end of construction analysis, and are essentially the same analysis as the downstream steady state.

The existing embankment was built with a county road near the downstream toe and adjacent to the principal spillway pipe outlet basin. This area was identified as the weak link in the slope stability analysis prior to any appropriate vehicle loading has been considered. This rehabilitation area of the dam should be given further consideration prior to final design.

The bi-linear shear strength parameters used for the slope stability analysis is presented in Attachment 6. The graphical summaries of the slope trails for the four TR-60 slope stability criteria are included as Attachment 7.

D. SEISMIC

Data for choosing the design Peak Ground Acceleration (PGA) and earthquake was based on the de-aggregation of seismic hazard from the 2008 version of the USGS National Seismic Hazards Mapping Project. A PGA of 0.076g was selected to analyze the site. The value of 0.076g is for the surface of competent rock. The PGA will need to be amplified based on the properties of the foundation soils at the base of the dam as more soil data will be necessary and will be obtained following phase II investigation. This will necessitate more analysis due to this being a high hazard structure and exceeding the 0.07 g threshold for low to moderate earthquakes. Comparison of the soil test data and the Seed Chart for soils likely liquefiable soils liquefiable soils do not appear to be prevalent at this site.

The yield acceleration PGA was calculated with GeoSlope Slope W software as 0.185 for the PHA of 0.076 g.

Based on the information summarized in the following bulleted points, the site will probably experience minimal deformation, but the site does not satisfy all the criteria to consider the seismic analysis complete.

The peak horizontal acceleration at the base of the embankment is less than 0.30 g. This site has a predicted peak horizontal acceleration of 0.076 g.

The embankment dam and foundation materials are not subject to liquefaction and do not include loose or collapsible soils or sensitive clays. The embankment dam and foundation materials consist of cohesive clays and claystone and according to the plotted liquid limit versus plasticity index and Seed chart as presented in Attachment 8 will not be subject to liquefaction or collapse.

The dam is well built and compacted to at least 95 percent of ASTM D698 maximum dry density, or to a relative density greater than 70 percent. The as-built drawings indicate that the core of the existing embankment dam was constructed to 90 percent of the modified Proctor ASTM 1557 Method A maximum dry density. This will have to be verified with further soil testing.

The static factors of safety for all potential upstream and downstream failure surfaces involving

loss of crest elevation (excluding shallow surficial slides) are greater than 1.5 under loading and pore-pressure conditions immediately prior to the earthquake. Factors of safety for the slope stability trials are all greater than 2.0 for non-seismic loading.

The phreatic surface is below the downstream face of the dam. There are currently no indications of the phreatic surface in the dam and the anticipated surface after years of service with water at the permanent pool level should be below the surface of the downstream slope.

Freeboard at the normal water surface should be more than 25 percent of the embankment height. Top of dam elevation is 643.4 feet and the principal spillway intake structure crest elevation is 626.4 feet for a total freeboard of 17.0 feet during sunny day conditions. The total height of the dam is 40 feet and therefore the freeboard is over 40 percent.

Damage to appurtenant structures from limited embankment deformation would not lead to dam failure. This has yet to be determined for the planned new structures.

The static factors of safety for all potential upstream and downstream failure surfaces involving loss of crest elevation are greater than 2.0 under pre-earthquake conditions.

PROPERTIES OF THE BORROW

No borrow from the embankment section where the labyrinth weir will be placed has been tested to date. The as-built drawings for this structure indicated that the borrow for the existing embankment was to be compacted to 85 percent of Maximum dry density according to the Modified Proctor ASTM D1557 Method A at 14 percent optimum moisture and a target of 117.5 pounds per cubic foot. These compaction values are at odds to the soil that has been tested from the auxiliary spillway which are classified as fat clay (CH) soil.

A. SHEAR STRENGTH

The shear strength data for the borrow from approximately station 15+40 to station 13+40 along the centerline of the dam including the over excavation for the labyrinth weir is unknown at this time. Further soil investigation and soil testing data is needed and for this report the historical soil testing data from the Plum Creek Watershed was utilized in the interim.

B. COMPACTION

No Standard Proctor density test, ASTM-D698 Method A (minus #4 material), were performed for any of the soil samples tested. Currently there is no soil testing data that corroborates with the as-built drawing compaction specifications.

C. DISPERSION

Double hydrometer and crumb tests were performed for each of the samples, with results summarized in the following table. Double Hydrometer test results less than about 60 indicate

that dispersion is not a problem, and these results did not vary and were all very low. Crumb test results of 1 indicate that dispersion is not present or is minimal, but results of 3 or 4 are positive indicators that clays are dispersive.

SLOPE STABILITY ANALYSIS

The cross section at the principal spillway was utilized in the current slope stability analysis as it was perceived as the largest embankment fill section and extends downstream in the steepest slope through County Road 157 and the outlet basin.

No slope stability issues were identified either upstream or downstream

Design Condition	Notes	Factor of	Req. Factor	Meets
		Safety	of Safety	
EOC	Pool Elev 620.0	2.4	1.4	1
URD	Pool Elev 638.5 to Elev 613.0	2.6	1.2	1
DSS	Pool Elev 626.5	2.3	1.5	1
Seismic	Pool Elev 626.5	1.8	1.1	J

CONCLUSIONS AND RECOMMENDATIONS

The proposed improvements to this site will not cause significant additional loading to either the foundation or embankment materials.

The proposed drainfill foundation drain system along the back toe of the embankment will need to be prepared to base soil category 1 according to the National Engineering Handbook, Part 633, Chapter 26, Gradation Design of Sand and Gravel Filters.

The proposed borrow from the excavation to place the labyrinth weir still needs to be sampled and tested to determine the ASTM D698 compaction recommendations. The proposed principal spillway intake structure foundation should also be investigated prior to contracting for construction to determine the extent of the foundation improvements.

This site is in the Blackland Prairie physiographic area with high plasticity clays that have plasticity indexes above 40 and potential for shrink swell characteristics which make them susceptible to desiccation cracking. Therefore, it will be important to provide adequate topsoil cover for any work on the embankment section of the dam and the outlets of the auxiliary and principal spillways.

If you would like to discuss this report or if you need to request further testing, please contact me at (817) 509-3204.

Steven Garner, P.E.

Civil Engineer

NRCS, Fort Worth, TX

Stephen Reinsch, P.E.

Co-Director, NDCSMC NRCS, Lincoln, NE

Attachments:

- 1. NRCS-ENG-354, Soil Mechanics Laboratory Test Data, 1 sheet
- 2. Undisturbed Sample Characteristics and Photos, 18 sheets
- 3. Shear Strength Soil Test Data, 136 sheets
- 4. Foundation Consolidation Soil Test Data, 2 sheets
- 5. Water Elevation Data, 1 sheet
- 6. Bi-Linear Strength Parameters, 1 sheet
- 7. Graphical Summaries of Slope Stability Analysis, 4 sheets
- 8. Seed Chart Plasticity Index versus Liquid Limit, 1 sheet

cc: (electronically distributed)

Shawn Higgins, Design Engineer, NRCS, Temple, TX Stephen Reinsch, Co-Director, NDCSMC, NRCS, Lincoln, NE Noller Herbert, Director, CED, NRCS, Washington, DC

Attachment 1

NRCS-ENG-354, Soil Mechanics Laboratory Test Data, 1 sheet

Sheet _1__ of _1__

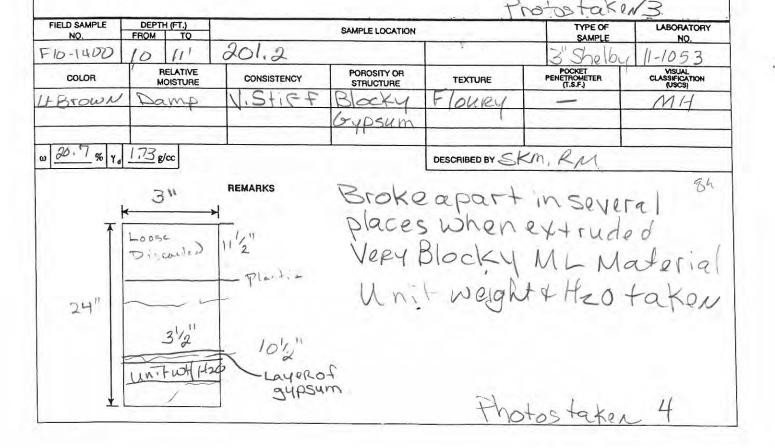
_				<u> </u>	1																					ı	1	1	-				Job No.	74	20			
	8/9	/10	TX	WF-07				G	rain Siz	ze Distril	bution	Mecha Expre	anical A ssed a	nalysis s Percen	t Fine	by Dry	Weigh	ht			A	Atterbe Limits		ation	%	(%) e	Weight	ation		Disp	persion		Moisture	-Density			1	
	Lab. Sample		Plum Creek Site 6 7420				Fine	es				Sa	and					Grav	el					lassific	Salts	loisture	/ Unit \	Satura	e	Cris	nh Tao	. Φ	ASTM	D698	Gs	G_{M}	% Absorp-	- pH
	No.	No.	Hays Co. Location and Description	Depth (ft) Sample Type	0.00	2 0.00	5 0.0	2 0.05	#200 0.074	#140 0.105	#60 0.250	#40 0.42	#20 0.84	2.0		9.525	12.7	19.05	25.4	38.1 70	6.2	.L. F	.l.	Unified Cla	Soluble Salts	Natural Moisture (%)	Natural Dry Unit V (gm/cm³)	Percent Saturation	Double		nb Test	in	Max γ _d (pcf)	w ₀ %			tion	,
					mm			Ì			mm	mm	mm	mm	mm	mm	mm	mm	mm	mm m	nm			011		40.4					1		+-		0.05			+-
F10	1399	201.1	Inside cut AS Approx. Sta. 5+00	0-2 Undist.		63	80	96	100												5	58 3	6	CH		16.4	1.55	61.2	5	1	1				2.65			<u> </u>
	1400	201.2	Inside cut AS Approx. Sta. 5+00	10-11 Undist.	. 54	76	90	99	100												7	70 4	6	СН		20.7	1.73	97.8	1	1	1				2.73			
	1401	201.3	Inside cut AS Approx. Sta. 5+00	30-35 Small	59	72	92	97	100												6	3 4	1	СН	<.5	22.6			11	1	1				2.72			
	1402	202.1	Inside cut AS Approx. Sta. 6+50	5-7 Undist.	. 54	68	93	3 100	100												7	70 4	7	СН		21.5	1.65	89.2	6	1	1				2.74			
	1403	202.2	Inside cut AS Approx. Sta. 6+50	10-11 Undist.	. 54	73	9	1 99	100												7	70 4	7	СН		22.4	1.64	92.0	5	1	1				2.73			
	1404	202.3	Inside cut AS Approx. Sta. 6+50	15-16 Undist.	35	75	90	5 100	100												6	68 4	5	СН		21.9	1.67	94.7	5	1	1				2.72			
	1405	202.4	Inside cut AS Approx. Sta. 6+50	19-20 Small	59	73	93	3 98	100												5	59 3	6	СН	2.5	22.1			11	1	1				2.76			
	1406	202.5	Inside cut AS Approx. Sta. 6+50	20- 20.5 Undist.	. 36	69	83	3 94	96					100							6	64 4	-0	СН		21.3	1.65	87.9	1	1	1		<u> </u>		2.75			
_	1407	203.1	Inside cut AS Approx. Sta. 8+00	17-19 Small	62	78	94	96	97	-	-	-	-	100							6	69 4	2	СН	<.5	22.3			13	1	1				2.72			
	1408	203.2	Inside cut AS Approx. Sta. 8+00	24-25 Small	52	73	93	98	100												6	33	19	СН	2.7	27.5			7	1	1				2.75			
	1409	301.1	Outlet Basin Left DS Approx. Sta. 15+00 CL Dam	14-16 Undist.	. 54	56	93	96	99					100							7	7 5	3	СН		28.6	1.53	99.1	7	1	1				2.74			
	1410	803.1	D. S. Berm Approx. Sta. 15+88	7-9.5 Undist.	. 43	63	82	2 86	87					100							5	52 3	30	СН		22.9	1.62	93.8	6	1	1				2.68			
	1411	802.1	D. S. Berm Approx. Sta. 14+70	7-8.5 Undist.	. 47	66	90	92	94					100							5	59 4	3	СН		28.0	1.51	96.4	6	1	1				2.69			

Attachment 2

Undisturbed Sample Characteristics and Photos, 18 sheets

MATERIALS

U.S. DEPARTMENT of AGRICULTURE


UNDISTURBED SAMPLE

PROJECT and STA	A 1	6. TX				
NDCSY	nc-Lina	coln. NE	APPROVED BY		DATE 5-	4-11
FIELD SAMPLE NO.	DEPTH (FT.) FROM TO		SAMPLE LOCATION		TYPE OF SAMPLE	LABORATORY NO.
-10-1399	6 2'	201.1			3"Shelby	11-1052
COLOR	RELATIVE MOISTURE	CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER (T.S.F.)	CLASSIFICATION (USCS)
Drown	Moist	V.Stiff	Roots	Smooth		CL
			Trash			
ω 16.4% y	155g/cc			DESCRIBED BY	SKM, RM	
24.	LORSON WINTENHAZO	T.		Soil-Not Ster Very St ial-crum! Deight th		

MATERIALS
ESTING REPORT

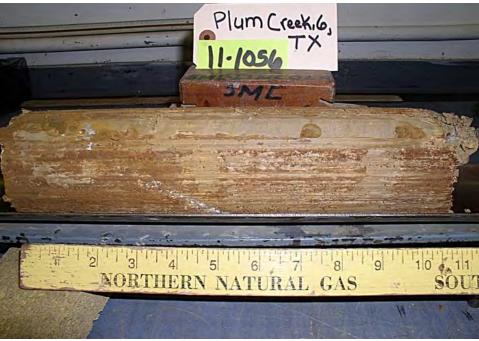
TIMDICTIDDED CAMPI E

TESTING RI	EPORT NATUR	RAL RESOURCES CON	SERVATION SERVICE		RACTERIS	
ROJECT and STAT	n Cree!	LLITX				
ESTED AT NOCS M	C- LINC	COLN, NE	APPROVED BY		DATE	5-4-11
FIELD SAMPLE NO.	DEPTH (FT.) FROM TO		SAMPLE LOCATION		TYPE OF SAMPLE	LABORATORY NO.
F104402	5 7'	2021			3"Shelb	11-1054
COLOR	RELATIVE MOISTURE	CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER (T.\$.F.)	VISUAL CLASSIFICATION (USCS)
Lt Brown	Damp	1.2+iff	Musque	Floury		ML
w 21.5 % Ya	1.65 g/cc			DESCRIBED BY	KMIRM	
	263 312" 263 312"	Plastic Cut tube cracked	Sample Sample Very S	of calci	tube. ium carb ium throug ocky M zo taken	how
<u>†</u>	INDE!	proke			El	

Motostaken L

FIELD SAMPLE NO.	DEPTH (FT.) FROM TO		SAMPLE LOCATION		TYPE OF SAMPLE	LABORATORY NO.
F10-1403	10 14'	202.2			3"Shelbu	11-1055
COLOR	RELATIVE MOISTURE	CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER (T.S.F.)	VISUAL CLASSIFICATION (USCS)
Lt Brown	Damp	V.S+;++	BUPSHIN	Moury	4,5	ML
204	(/a/)					
w 22.4 % Ya	109 g/cc			DESCRIBED BY 54	M, RM	
Plastic T	Loose Distand SAVED Lo	10/2" 14" - 6/2" (4/2)	half a Gypsu block	min Samp	de very s	otiff,
<u>+</u>				Ph	o tos taki	N2

LABORATORY NO.

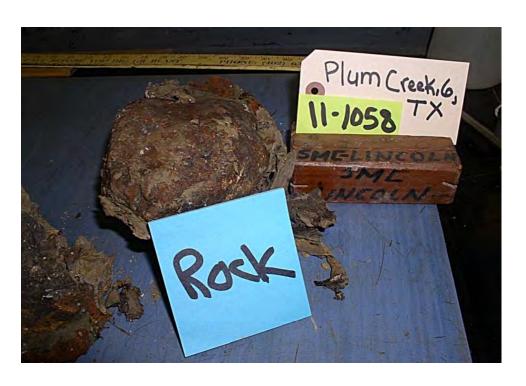

MATERI TESTING R		ta Martin Sant	J.S. DEPART RAL RESOU
PHOJECT and STA		ree	K6.
TESTED AT	nc-	LIN	JCCL.
FIELD SAMPLE NO.	DEPTH	(FT.)	
FID-1404	15	1/0	202
COLOR	100	ELATIVE DISTURE	CONS
L+Brown	Do	mp	11.5
ω <u>21.9</u> % γ	1.67	/cc	

TMENT of AGRICULTURE RCES CONSERVATION SERVICE

UNDISTURBED SAMPLE CHARACTERISTICS

			V.		, 1100
n Creek	46. TX				
nc-LIN	COLNIN	APPROVED BY		DATE	4-11
DEPTH (FT.) FROM TO		SAMPLE LOCATION		TYPE OF SAMPLE	LABORATORY NO.
15 16	2023			3"Shelbu	11-1056
RELATIVE MOISTURE	CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER (T.S.F.)	VISUAL CLASSIFICATION (USCS)
Damp	1. Stief	Crypsum	Floury		ML
1.67 g/cc			DESCRIBED BY	okm Qu	
← →			thrower th	to 100 16 16 20 +a 60.	gu mifurm.
	DEPTH (FT.) FROM TO S 16 RELATIVE MOISTURE DOLLING 1.67 g/cc 31 DISCULLENT DOSENIAL WASH WASH	DEPTH (FT.) FROM TO 15 16 2023 RELATIVE CONSISTENCY DOS MAT DO	DEPTH (FT.) DEPTH (FT.) FROM TO SAMPLE LOCATION SAMPLE LOCATION SAMPLE LOCATION POROSITY OR STRUCTURE DOLL M. STIFF (TYPSUM) I G. J.	DEPTH (FT.) FROM TO SAMPLE LOCATION SAMPLE LOCATION SAMPLE LOCATION SAMPLE LOCATION FROM TO SAMPLE LOCATION FROM TO SAMPLE LOCATION FROM TO SAMPLE LOCATION FEXTURE POROSITY OR STRUCTURE TEXTURE DESCRIBED BY TEXTURE DESCRIBED BY TO TO TO TO TO TO TO TO TO T	DEPTH (FT.) DEPTH (FT.) FROM TO SAMPLE LOCATION SAMPLE SAMPLE LOCATION TYPE OF SAMPLE 3"She loc RELATIVE MOISTURE CONSISTENCY POROSITY OR STRUCTURE PORCET PENETHOMETER (1.8.F.) DESCRIBED BY SKM, RM DESCRIBED BY SKM, RM

FIELD SAMPLE NO.	FROM	H (FT.)		SAMPLE LOCATION		TYPE OF SAMPLE	LABORATORY NO.
F10-1406	20	205	2025			3"Shelbu	11-1057
COLOR		RELATIVE	CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER (T.S.F.)	VISUAL CLASSIFICATION (USCS)
LABLOWA	1 Po	amp	V.Stiff	bypsum	Hours	-	ML
0 21, 3 % Y	!65 g	/cc			DESCRIBED BY	SKM. RM	
		3	REMARKS				CK.
· T	Nicco	eided	1 1/2	Block	ymater	ial unifor ghout sav H20 tako	m
Augrale		esded a mort	plastic	byps	um throu	ghout sar	nple
DISCUITE		0+/H20	Eroke	Unit	weighta	Hantaka	-
-	SA	ED	8/2			201010	,,
	5	11	02				
<u>↓</u>						Phata.L	U . 2
7]	-		Photosta	Ken-3



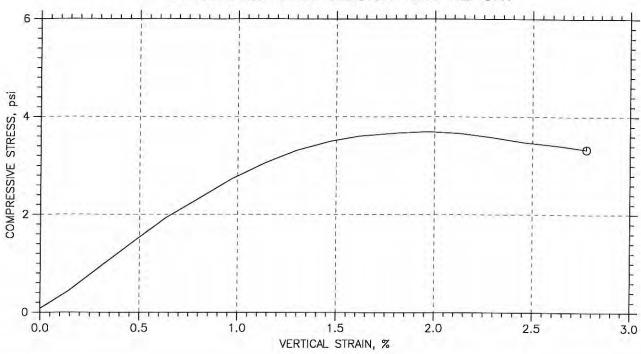
MATERIA TESTING RI		S. DEPARTMENT of A			RACTERIS	
PROJECT and STAT	m Cree	K G. TX		I.		
TESTED AT NDCS	UC-LIN	COLN, NE	APPROVED BY		DATE 5-5	5-11
FIELD SAMPLE NO.	DEPTH (FT.) FROM TO		SAMPLE LOCATION		TYPE OF SAMPLE	LABORATORY NO.
F10-1409		300.1			5"Shelb	11-1058
COLOR	MOISTURE	CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER (T.S.F.)	VISUAL CLASSIFICATION (USCS)
4 Brown	Moist	VSFIFF	1-3"Rock	SMOOTH	4.5	CL
-		1	race bypsun			
w 28.6 % Ye	1.53 g/cc			DESCRIBED BY	LM, RM	
	1083 212" 2083 512" Unitwo H20	REMARKS 107/4 PICEXIC CULTUDE CULTUDE Servered	tophe again Other Frac	not push, of came color wise all would ruise all your for sups weight all 20	not push tion had popears. M core um through taken.	hightly high tube 3"tRock to be host sample
				The	otos tak	Cen3

	FROM	TO		SAMPLE LOCATION		TYPE OF SAMPLE	LABORATORY NO.
F10-1410	7	9'	302.1			3'Shelbi	11-1059
COLOR	MC	ELATIVE DISTURE	CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER (T.S.F.)	CLASSIFICATION (USCS)
DK Brown	Mo	ist	VStiff		5 Mooth	3.75	CL
w 22.9 % Yd	162 g	œ			DESCRIBED BY	KM RM	
	3	3''	REMARKS	,	~		Cu
<u></u> ▼ □	La051	>		0000	unitor	mcore	L-CL
aug of	Disc	arded	Plastic	Uniti	weight.	m core	VON
Discord		+1420				2010	cker
30	8/12	1092	011				
		2082	21"				
	21/2	, Ĭ <i>i</i>					
1 1	That	· V	-		D	hototake	- 12

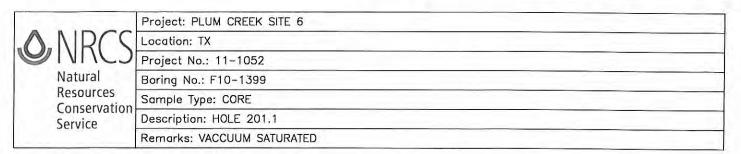
MATERL FESTING RI		S. DEPARTMENT of AG LL RESOURCES CONSE		UNDIST CHA	TURBED S RACTERIS	AMPLE STICS
PROJECT and STAT	reex 6	Ty				
TESTED AT		coln, NE	APPROVED BY		DATE	5-11
FIELD SAMPLE NO.	DEPTH (FT.) FROM TO	2011, 102	SAMPLE LOCATION		TYPE OF	LABORATORY
70-1411	7 8.5'	303,1			3'Shelbu	11-1060
COLOR	RELATIVE MOISTURE	CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER (T.S.F.)	VISUAL CLASSIFICATION (USCS)
Brown	Moist	Stiff		Smooth	1,5	CL
100 4 1 1	15.					
28.6 % Ye	1.5 g/cc			DESCRIBED BY 5	KMIRM	
1	3"	REMARKS				84
不			(-	1	\sim	
	LOOS Larde	c\	00	ead unit	orm co	DRe-
N. Edle		- plastic	CL	mater	ia	
	unital Heo		1.1	. /		
30	unituitie	-	Un	it weigh	ta H20	taken
	SAVED	14")		- 11020
	5/10-11	14				
	10"					
1	Brdev	_				
-						
					Photos +	ekon 2
FIELD SAMPLE NO.	DEPTH (FT.) FROM TO		SAMPLE LOCATION		TYPE OF	LABORATORY
NO.	PROM 10				SAMPLE	NO.
COLOR	RELATIVE	CONSISTENCY	POROSITY OR	TEXTUDE	POCKET PENETROMETER	VISUAL CLASSIFICATION
	MOISTURE	CONSISTENCT	STRUCTURE	TEXTURE	(T.S.F.)	(USCS)
ω% γ	g/cc			DESCRIBED BY		
				DESCRIBED D1		
		REMARKS				
	 	1				
T						
				•		
	P 1	1				
1						

Attachment 3

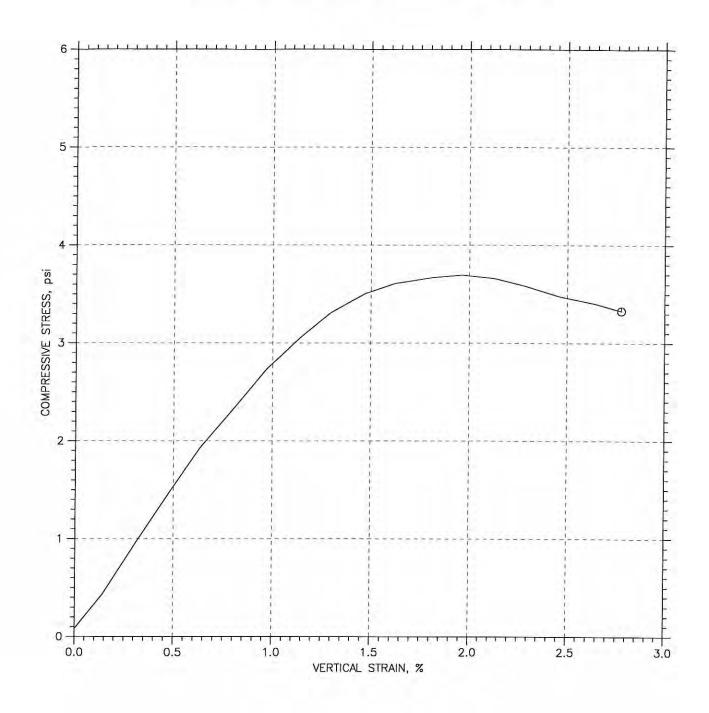
Shear Strength Soil Test Data, 136 sheets


MATERIALS

U.S. DEPARTMENT of AGRICULTURE


UNDISTURBED SAMPLE

PROJECT and STA	A 1	6. TX				
NDCSY	nc-Lina	coln. NE	APPROVED BY		DATE 5-	4-11
FIELD SAMPLE NO.	DEPTH (FT.) FROM TO		SAMPLE LOCATION		TYPE OF SAMPLE	LABORATORY NO.
-10-1399	6 2'	201.1			3"Shelby	
COLOR	RELATIVE MOISTURE	CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER (T.S.F.)	CLASSIFICATION (USCS)
Drown	Moist	V.Stiff	Roots	Smooth	1190.3	CL
			Trash			
ω 16.4% y	155g/cc			DESCRIBED BY	SKM, RM	
24.	LORSON WINTENHAZO	T.		Soil-Not Ster Very St ial-crum! Deight th		


UNCONFINED COMPRESSION TEST REPORT

Sy	ymbol	Ф			
Te	est No.	1			
Initial	Diameter, in	1.402			
	Height, in	3.116			
	Water Content, %	29.18			
	Dry Density, pcf	92.21			
	Saturation, %	97.36			
	Void Ratio	0.794		V	
Ur	nconfined Compressive Strength, psi 2	3.694			
Ur	indrained Shear Strength, psi $\frac{g_{1/2}}{g_{1/2}} = \frac{g_{1/2}}{g_{1/2}}$	1.847 ps.	- 266 psf		
Tir	me to Failure, min	2.004		psf e 22 srem	
St	rain Rate, %/min	1			
Me	easured Specific Gravity	2.65			
Lic	quid Limit				
Ple	astic Limit			(10000000000000000000000000000000000000	
Plo	asticity Index				
Fa	ilure Sketch				

UNCONFINED COMPRESSION TEST REPORT

	Project: PLUM CREEK SITE 6	Location: TX	Project No.: 11-1052
M.NIRCC	Boring No.: F10-1399	Tested By: SKM	Checked By: SKM
SIMICO	Sample No.: 11-1052	Test Date: 5/19/11	Depth: 0-2'
Natural	Test No.: 1	Sample Type: CORE	Elevation: N/A
Resources Conservation	Description: HOLE 201.1		
Service	Remarks: VACCUUM SATURATED		

UNCONFINED COMPRESSION TEST

Project: PLUM CREEK SITE 6 Boring No.: F10-1399 Sample No.: 11-1052 Test No.: 1

Soil Description: HOLE 201.1 Remarks: VACCUUM SATURATED

Specimen Height: 3.12 in Specimen Area: 1.54 in^2 Specimen Volume: 78.83 cc

Liquid Limit: ---Plastic Limit: ---Measured Specific Gravity: 2.65

Location: TX Tested By: SKM Test Date: 5/19/11 Sample Type: CORE

Project No.: 11-1052 Checked By: SKM Depth: 0-2' Elevation: N/A

Cap Mass: 0 gm

Water Content Information

Container ID Container ID
Wt. Container, gm
Wt. Container + Wet Soil, gm
Wt. Container + Dry Soil, gm
Wt. Dry Soil, gm
Water Content, %
Void Ratio
Degree of Saturation, %
Wet Unit Weight, pcf
Dry Unit Weight, pcf

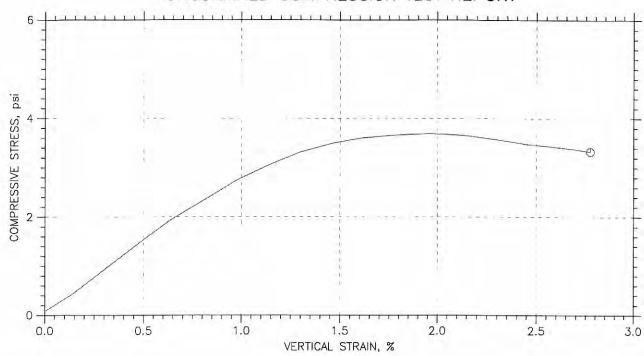
150.4 116.43 116.43 29.18 0.79 97.36 119.11 92.206

UNCONFINED COMPRESSION TEST

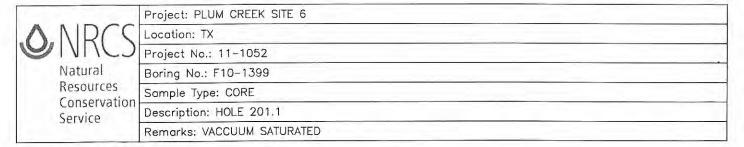
Project: PLUM CREEK SITE 6
Boring No.: F10-1399
Sample No.: 11-1052
Test No.: 1

Soil Description: HOLE 201.1 Remarks: VACCUUM SATURATED

Specimen Height: 3.12 in Specimen Area: 1.54 in^2 Specimen Volume: 78.83 cc


Location: TX Tested By: SKM Test Date: 5/19/11 Sample Type: CORE

Project No.: 11-1052 Checked By: SKM Depth: 0-2' Elevation: N/A


Liquid Limit: ---Plastic Limit: ---Measured Specific Gravity: 2.65

Cap Mass: 0 gm

	Time min	Axial Displacement in	Axial Strain %	Load 1b	Corrected Area in^2	Corrected Vertical Stress psi	Corrected Shear Stress psi
1	0	0	0	0.12509	1.5438	0.081027	0.040513
2	0.17058	0.0044013	0.14125	0.67234	1.546	0.4349	0.21745
3	0.33725	0.0098682	0.31669	1.5167	1.5487	0.97934	0.48967
4	0.50403	0.014872	0.47727	2.2828	1.5512	1.4717	0.73584
5	0.67057	0.019783 0.025296	0.63488 0.81181	3.0021 3.6588	1.5536 1.5564	1.9323 2.3508	0.96615
6	1.004	0.023296	0.97238	4.2686	1.5589	2.7381	1.1754 1.3691
8	1.1706	0.035535	1.1404	4.769	1.5616	3.0539	1.527
9	1.3372	0.040399	1.2965	5.1755	1.5641	3.309	1.6545
10	1.504	0.04582	1.4705	5.4882	1.5668	3.5028	1.7514
11	1.6706	0.050453	1.6192	5.6602	1.5692	3.6071	1.8035
12	1.8372	0.056429	1.811	5.7697	1.5723	3,6697	1.8348
13	2.004	0.061155	(1.9626)	5.8166	1.5747	3.6938	1.8469
14	2.1705	0.066483	2.1336	5.7697	1.5774	3.6576	1.8288
15	2.3372	0.071208	2.2853	5.6602	1.5799	3.5827	1.7913
16	2.504	0.076536	2.4562	5.5038	1.5827	3.4776	1.7388
17	2.6705	0.082374	2.6436	5.3944	1.5857	3.4019	1.7009
18	2.8083	0.086405	2.7729	5.2849	1.5878	3.3284	1.6642

Sy	ymbol	Ф		
Te	est No.	1		
Diameter, in		1.402		
	Height, in	3.116 .		
ī	Water Content, %	29.18		
Dry Density, pcf 92.21				
	Saturation, %	97.36		
	Void Ratio	0.794		
Ur	nconfined Compressive Strength, psi	3.694		
Ur	ndrained Shear Strength, psi	1.847) I I I I I I I I I I I I I I I I I I I
Tir	me to Failure, min	2.004		
St	rain Rate, %/min	1 -		
Ме	easured Specific Gravity	2.65		
Lie	quid Limit			
PI	astic Limit			
ΡI	asticity Index			
Fo	illure Sketch			

SHEAR TEST DATA

	CELL NO.			LOAD CH.	-		V
UU	BURETTE NO.			STRAIN CH.		11	1
qu	MACHINE NO.	_3		P.P. CH	LAB. NO	o. <u>//-</u> /	052
CUBA	NR .				11-16	05284	/
VS	COMPACTED		_	2.65	TEST DAT	TE 5/19	
BP BP	UNDISTURBED		_	Gs			
		22.07				i	
Cell _	PSI Base_		Test_	PSI B	RATE OF S	STRAIN	in./%/min.
	SPECIMEN DA				TURE DAT ICIAN SKA		
DIAMETER		INITIAL	IN MACHIN			INITIAL	FINAL
TOP	IN.	1.392	1,401	WET WT. SPEC. + CAN	(GM.)		218.63
MIDDLE	IN.	1.393	1.404	DRY WT. SPEC. + CAN	(GM.)		185.01
воттом	IN.	1392	1399	WT. MOISTURE	(GM.)		
MEAN DIAMETE	R IN.	1.393	1,402	WT. CAN	(GM.)		68.58
HEIGHT	IN.	3.014	3,116	WT DRY SOIL	ritial (GM.)		
MOIST WT.	GM.	13532	150,40	PERCENT MOISTURE	16,22	29.18	28,88
END AREA	IN. ²	1.524		DRY UNIT WEIGHT	(GM/CC)		
VOLUME	IN. ⁹	4.593	4,810	PERCENT POROSITY			
MOIST UNIT WT		112.23	119.11	THEORETICAL SAT. %			
CON	SOLIDATION	DATA		PERCENT SAT, @ START			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
TECH	NICIAN			FAILURE SKETCH	116.43		
EXTENSIOMETE	READINGS	DATE: /			,0		
INITIAL READI	NG IN.	TIME:			7		
FINAL READIN	G IN.	TIME:			1		1
HT. DEFORMA	TION IN				1	į.	
INITIAL BURETT	E READING		СМ	1			
FINAL BURETTE	READING		CM			()	
VOL. CHANGE	CC x 0.061		IN. ³	(S-			
CONS. VOLUME	7	1	IN.3			1.	
CONS. HEIGHT	OF SPECIMEN	1	IN.		1		7
AVG. AREA OF C	ONS. SPECIMEN	1	IN. 2				
CONSOLIDATED	MOIST UNIT WT.		PCF				
				INITIAL DRY DENSITY	00		
				FINAL DRY DENSITY	Y= 92,6	***	
REMARKS:	1398	3	010	1403	311	7	
Initiat	34		15	1	3/1. 3/14 3/2	0	
/W.	9	3	16	1402	3/2,	/	
1	6	O					
	99	7		1402			
	8	5	Checked		um De	ate: _5_/	26/1

Shear Test Data Specimen #1

psi

Project: PLUM CREEK SITE 6

State: TX

Lab No: 11-1052 Test Specifications:

Specfic Gravity (Gs): 2.65

Shear Cell No.: Confining Pressure:

Top Diameter: 1.401 inches

Middle Diameter: 1.404 inches (Either measure two middle diameters

Middle Diameter: 1.404 inches or enter in the same value)

Bottom Diameter:

Height of Specimen:

Moist Weight of Specimen:

Mean Diameter:

End Area:

1.399 inches

3.116 inches

150.40 gms.

1.402 inches

1.544 sq. inches

Volume of Specimen: 4.810 cubic inches

Moist Unit Weight: 119.11 pcf (multiply gms/cubic inch by 3.8095 to

to achieve pcf)

Extensiometer Height Deformation: inches Initial Volume of Base Cell: ml. Final Volume of Base Cell: ml.

Is the Large Burette being Used? no (yes or no)

Calibrated Area of the Base Burette: cc

Burette Volume: cc note 1.00 ml = 1.00 cc

Burette Volume: cubic inches
Consolidated Volume: 4.810 cubic inches

Consolidated Volume: 4.810 cubic inches
Assumed Consolidated Height: inches

Assumed Height after Consolidation: 3.116 inches

Moist Weight of Specimen + Can:

Dry Weight of Specimen + Can:

Weight of Can:

Weight of Water:

Weight of Dry Specimen:

218.63 gms.

185.01 gms.

68.58 gms.

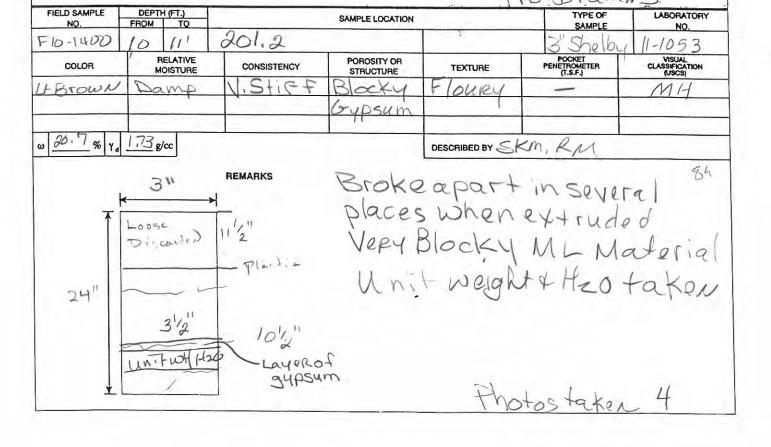
33.62 gms.

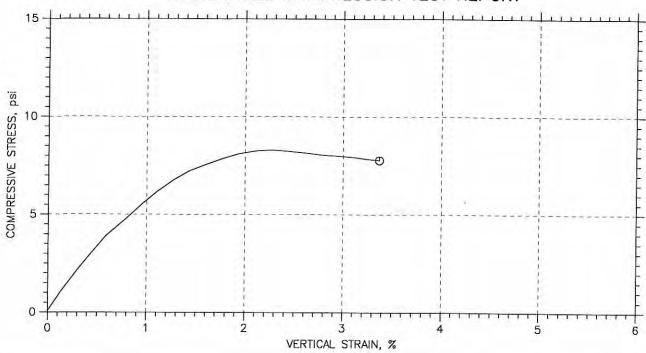
116.43 gms.

Initial Water Content: 29.18 percent Initial Dry Density: 92.20 pcf
Percent Saturated: 97.34 percent

Initial Void Ratio: 0.794

Initial Diameter: 1.402 inches Initial Height: 3.116 inches


Final Water Content: 28.88 percent
Final Dry Density: 92.20 pcf
Percent Saturated: 96.34 percent


Final Void Ratio: 0.794

Final Diameter*: 1.402 inches
Final Height: 3.116 inches

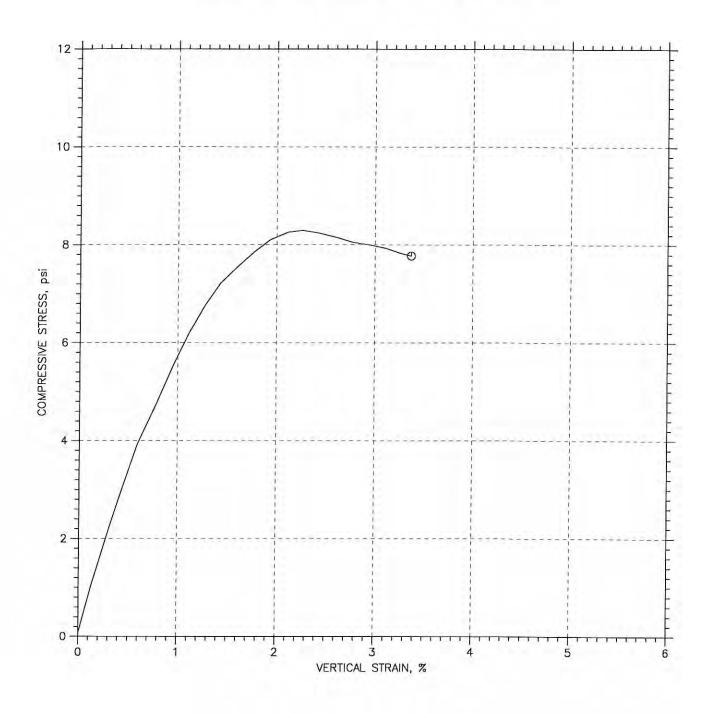
*Diameter is estimated to be unchanged

Checked by: SKM

Sy	ymbol	Ф			
Te	est No.	1			
	Diameter, in	1.422			
	Height, in	3.129			
Initial	Water Content, %	26.41			
ī.	Dry Density, pcf	98.6			
	Saturation, %	98.97			
	Void Ratio	0.729			
Ur	nconfined Compressive Strength, psi 🔗	8.295			
Ur	ndrained Shear Strength, psi 24/2 > Lui	4.148 ps	597 pst		
Tir	me to Failure, min	2.3339	Record a 600 ps	F & 2.32 STOWN	
St	rain Rate, %/min	1			
Me	easured Specific Gravity	2.73			
Lic	quid Limit	(4-5)			
Plo	astic Limit		4		
Plo	asticity Index				
Fa	ilure Sketch				

Project: PLUM CREEK SITE 6

Location: TX


Project No.: 11-1053

Boring No.: F10-1400

Sample Type: CORE

Description: HOLE 201.2

Remarks: VACCUUM SATURATED

	Project: PLUM CREEK SITE 6	Location: TX	Project No.: 11-1053		
-A-NIRCS	Boring No.: F10-1400	Tested By: SKM	Checked By: SKM		
COUNT	Sample No.: 11-1053	Test Date: 5/20/11	Depth: 10-11'		
Natural	Test No.: 1	Sample Type: CORE	Elevation: N/A		
Resources Conservation	Description: HOLE 201.2				
Service	Remarks: VACCUUM SATURATED				
Scritte					

Project: PLUM CREEK SITE 6 Boring No.: F10-1400 Sample No.: 11-1053 Test No.: 1

Soil Description: HOLE 201.2 Remarks: VACCUUM SATURATED

Specimen Height: 3.13 in Specimen Area: 1.59 in^2 Specimen Volume: 81.43 cc

Liquid Limit: ---Plastic Limit: ---Measured Specific Gravity: 2.73

Tested By: SKM
Test Date: 5/20/11
Sample Type: CORE

Location: TX

Project No.: 11-1053 Checked By: SKM Depth: 10-11' Elevation: N/A

Cap Mass: 0 gm

Water Content Information

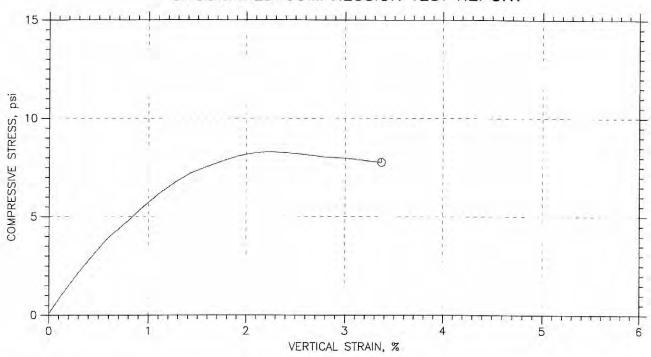
Container ID
Wt. Container, gm
Wt. Container + Wet Soil, gm
Wt. Container + Dry Soil, gm
Wt. Dry Soil, gm
Water Content, %
Void Ratio
Degree of Saturation, %
Wet Unit Weight, pcf
Dry Unit Weight, pcf

0 162.58 128.61 128.61 26.41 0.73 98.97 124.64 98.596

Project: PLUM CREEK SITE 6 Boring No.: F10-1400 Sample No.: 11-1053 Test No.: 1

Soil Description: HOLE 201.2 Remarks: VACCUUM SATURATED

Specimen Height: 3.13 in Specimen Area: 1.59 in^2 Specimen Volume: 81.43 cc


Location: TX Tested By: SKM Test Date: 5/20/11 Sample Type: CORE

Project No.: 11-1053 Checked By: SKM Depth: 10-11' Elevation: N/A

Liquid Limit: ---Plastic Limit: ---Measured Specific Gravity: 2.73

Cap Mass: 0 gm

	Time min	Axial Displacement in	Axial Strain %	Load 1b	Corrected Area in^2	Corrected Vertical Stress psi	Corrected Shear Stress psi
1 2 3 4 5 6 7 8 9 10 11 12	0.1707 0.33737 0.50425 0.67068 0.83733 1.0042 1.1707 1.3334 1.5003 1.6667 1.8337	0.004077 0.0094512 0.014177 0.018439 0.024462 0.029975 0.034701 0.03989 0.044662 0.050175 0.055503	0.1303 0.30205 0.45308 0.5893 0.78178 0.95798 1.109 1.2748 1.4273 1.6035 1.7738	0.12509 1.673 3.4868 4.9566 6.2387 7.5834 8.9125 9.9288 10.883 11.617 12.196	1.5881 1.5902 1.593 1.5954 1.5976 1.6007 1.6035 1.606 1.6186 1.6111	0.078763 1.0521 2.1889 3.1069 3.9052 4.7377 5.5581 6.1825 6.7651 7.2107 7.5563 7.8623	0.039382 0.52604 1.0944 1.5534 1.9526 2.3689 2.7791 3.0913 3.3825 3.6054 3.7781
13 14 15 16 17 18 19 20 21	2.0004 2.167 2.3339 2.5009 2.6675 2.8344 3.0013 3.168 3.3346 3.4474	0.06046 0.066112 0.070699 0.075795 0.081633 0.086775 0.092288 0.097338 0.10179 0.10545	1.7732 2.1129 2.2595 2.4223 2.6089 2.7733 2.9495 3.1108 3.253 3.37	13.112 13.478 13.478 13.416 13.291 13.15 13.087 12.993 12.853 12.775	1.6194 1.6224 1.6249 1.6276 1.6307 1.6334 1.6364 1.6391 1.6415	8.1007 8.2593 8.295 8.2428 8.1503 8.0504 7.9976 7.927 7.8297 7.7726	3.9312 4.0504 4.1296 4.1475 4.1214 4.0751 4.0252 3.9988 3.9635 3.9148 3.8863

Sy	ymbol	0		
Te	est No.	1		
	Diameter, in	1.422		
	Height, in	3.129 .		
0	Water Content, %	26.41		
Initial	Dry Density, pcf	98.6 ,		
	Saturation, %	98.97		
	Void Ratio	0.729		
Ur	nconfined Compressive Strength, psi	8.295		
Ur	ndrained Shear Strength, psi	4.148		
Tir	me to Failure, min	2.3339		
St	rain Rate, %/min	1 7		
Me	easured Specific Gravity	2.73		
Lic	quid Limit			
Pl	ostic Limit	1444		
Pl	asticity Index	(444)		
Fa	ilure Sketch			

Service

Project: PLUM CREEK SITE 6

Location: TX

Project No.: 11–1053

Boring No.: F10–1400

Sample Type: CORE

Description: HOLE 201.2

Remarks: VACCUUM SATURATED

SHEAR TEST DATA

CELL NO.	-	_	LOAD CH.	-		
UU BURETTE NO.	3.		STRAIN CH.		11-11	162
qu MACHINE NO.			P.P. CH	LAB. NO). 11-10 5384	12
CUBAR			*	11-12	3384	111
VS COMPACTED	-		272	TEST DAT	E 5/20	111
BP UNDISTURBED			Gs_273.			
Cell PSI Base	DO	Test_	- DOL D	DATE OF C	TDAIN	in /0/) Imin
SPECIMEN D		Test_	PSI B	RATE OF S		in M/min.
TECHNICIAN_	AIA		B and a second	TURE DAT		
	INITTIAL	IN LAKA OLUM	TECHNI	CIAN		FINAL
TOP IN.	INITIAL 1,400	IN MACHIN	WET WT. SPEC. + CAN	(GM)	INITIAL	232.16
MIDDLE IN.	1,409	1,419	DRY WT. SPEC. + CAN	(GM.)		198.51
BOTTOM IN.	1.404	11421	WT. MOISTURE	(GM.) (GM.)	Andrew Lab	110.5
MEAN DIAMETER IN.	1,406	1.422	WT. CAN	(GM.)		6990
HEIGHT IN.	3004	3.120	WT DRY SOIL	(GM.)	E Audie en Audi	01,10
MOIST WT. GM.	156.26	162,58		21,50	26.41	2616
END AREA IN.®	1.55-3		DRY UNIT WEIGHT	(GM/CC)	~ 41	5.4.10
VOLUME IN.9	4.664	4,969	PERCENT POROSITY	(divioo)		
MOIST UNIT WT. PCF	127.63		THEORETICAL SAT. %	_		
CONSOLIDATION	DATA		PERCENT SAT. @ START			
TECHNICIAN	1		FAILURE SKETCH			
EXTENSIOMETER READINGS	DATE:			128,61		
	TIME:			1		-\
	TIME: /				1	
HT. DEFORMATION IN.						
INITIAL BURETTE READING		CM				
FINAL BURETTE READING		CM		-	75°\	
VOL. CHANGE CC x 0.061	/	IN. ³				
CONS. VOLUME OF SPECIMEN	1	IN. ³		1		
CONS. HEIGHT OF SPECIMEN		IN.				
AVG, AREA OF CONS. SPECIMEN		IN. 2			1	1
CONSOLIDATED MOIST UNIT WT.		PCF				
CONCOLIDATED MOIOT CHIT WIT.		101				
			INITIAL DRY DENSITY	= 98.	59	
			FINAL DRY DENSITY	00	59	
REMARKS:	391	2 07 9	ldes to	V Martinal	S 12 -	
12	.00	3008	1427 Horizontal		Cracks	10
- +iAc	165	3000	2149			
11.	112		1424 3/29			
1.6	02		/ 10/			4
	06	Q x 3-1 3	1482			62
N. 2		Checked	by: Skm	Da	ite:5_/	26

Shear Test Data Specimen #1

Project: PLUM CREEK SITE 6

State: TX

Lab No: 11-1053 Test Specifications:

Specfic Gravity (Gs): 2.73

Shear Cell No.: Confining Pressure: psi

Top Diameter: 1.427 inches

Middle Diameter: 1.419 inches (Either measure two middle diameters

Middle Diameter: 1.419 inches or enter in the same value)
Bottom Diameter: 1.421 inches

Height of Specimen:

Moist Weight of Specimen:

Mean Diameter:

3.129 inches
162.58 gms.
1.422 inches

End Area: 1.588 sq. inches
Volume of Specimen: 4.969 cubic inches

Moist Unit Weight: 124.63 pcf (multiply gms/cubic inch by 3.8095 to to achieve pcf)

Extensiometer Height Deformation: inches Initial Volume of Base Cell: ml. Final Volume of Base Cell: ml.

Is the Large Burette being Used? no (yes or no)

Calibrated Area of the Base Burette: cc

Burette Volume: cc note 1.00 ml = 1.00 cc

Burette Volume: cubic inches

Consolidated Volume: 4.969 cubic inches
Assumed Consolidated Height: inches

Assumed Height after Consolidation: 3.129 inches

Moist Weight of Specimen + Can:

Dry Weight of Specimen + Can:

Weight of Can:

Weight of Water:

Weight of Dry Specimen:

232.16 gms.

198.51 gms.

69.90 gms.

33.65 gms.

128.61 gms.

Initial Water Content: 26.41 percent Initial Dry Density: 98.59 pcf Percent Saturated: 98.96 percent

Initial Void Ratio: 0.729

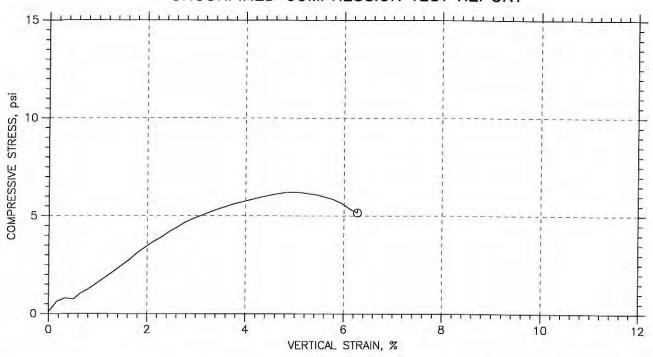
Initial Diameter: 1.422 inches Initial Height: 3.129 inches

Final Water Content: 26.16 percent Final Dry Density: 98.59 pcf
Percent Saturated: 98.03 percent

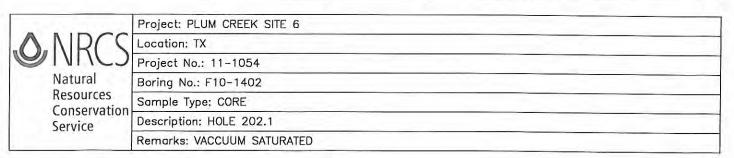
Final Void Ratio: 0.729
Final Diameter*: 1,422 inches

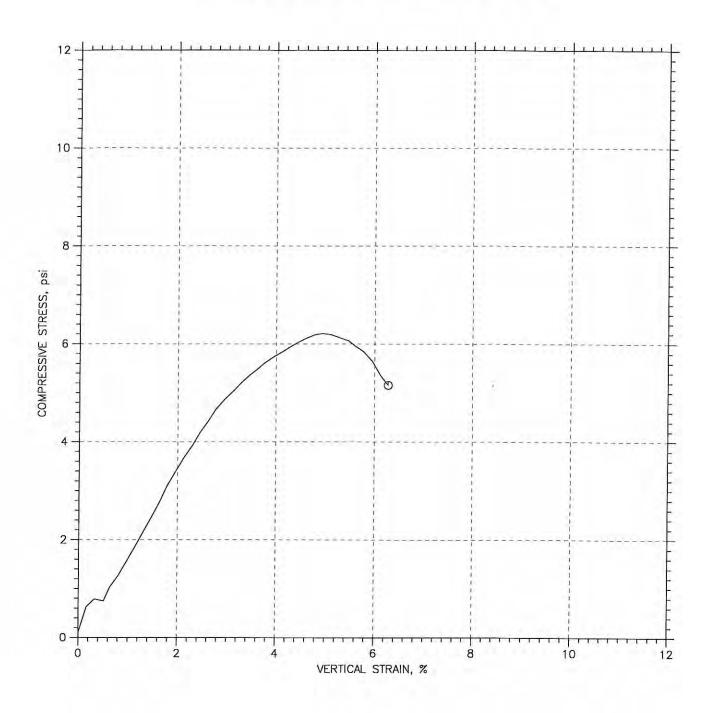
Final Height: 1,422 inches 3,129 inches

*Diameter is estimated to be unchanged


Checked by: SKM

MATERIALS


TINIDICTTIDDED CARROT E


Plum	creel	LGITX				
NDCS M	C-LINC	aln, NE	APPROVED BY		DATE 5	5-4-11
FIELD SAMPLE NO.	DEPTH (FT.) FROM TO		SAMPLE LOCATION		TYPE OF SAMPLE	LABORATORY NO,
-104402	5 7'	2021			3"Shelby	11-1054
COLOR	RELATIVE MOISTURE	CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER (T.S.F.)	VISUAL CLASSIFICATION (USCS)
+ Brown	Damp	1.2+:6+	Museper	Floury	==	ML
21.5 % Yd	1.65g/cc 3	REMARK	s would not		KMIRM	5

Thotostaken 2

Sy	ymbol	Ф			1
Te	st No.	1			
Diameter, in		1.436			
	Height, in	3.089			
Initial	Water Content, %	27.34			
	Dry Density, pcf	96.09			
	Saturation, %	96.03			
	Void Ratio	0.78			
	nconfined Compressive Strength, psi &	6.213			
Un	indrained Shear Strength, psi $\frac{9u}{2}$ \Rightarrow $\frac{2u}{2}$	3.107 ps :	447 psf		
Tir	ne to Failure, min	5.004		per e 56 strain	
Sti	rain Rate, %/min	1			
Me	easured Specific Gravity	2.74			
Lic	quid Limit				
Pla	astic Limit				
Plo	asticity Index				
Fa	ilure Sketch				

	Project: PLUM CREEK SITE 6	Location: TX	Project No.: 11-1054		
	Boring No.: F10-1402	Tested By: SKM	Checked By: SKM		
	Sample No.: 11-1054	Test Date: 5/23/11	Depth: 5-7'		
Natural	Test No.: 1	Sample Type: CORE	Elevation: N/A		
Resources	Description: HOLE 202.1				
	Remarks: VACCUUM SATURATED				
Conservation					

Project: PLUM CREEK SITE 6 Boring No.: F10-1402 Sample No.: 11-1054 Test No.: 1

Soil Description: HOLE 202.1 Remarks: VACCUUM SATURATED

Specimen Height: 3.09 in Specimen Area: 1.62 in^2 Specimen Volume: 81.98 cc

Liquid Limit: ---Plastic Limit: ---Measured Specific Gravity: 2.74

Location: TX
Tested By: SKM
Test Date: 5/23/11
Sample Type: CORE

Project No.: 11-1054 Checked By: SKM Depth: 5-7' Elevation: N/A

Cap Mass: 0 gm

Water Content Information

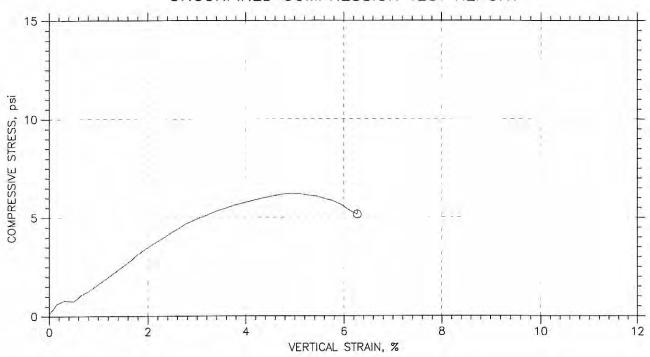
Container ID
Wt. Container, gm
Wt. Container + Wet Soil, gm
Wt. Container + Dry Soil, gm
Wt. Dry Soil, gm
Water Content, %
Void Ratio
Degree of Saturation, %
Wet Unit Weight, pcf
Dry Unit Weight, pcf

_	0
1	60.69
1	26.19
1	26.19
	27.34
	0.78
	96.03
-	
1	22.36

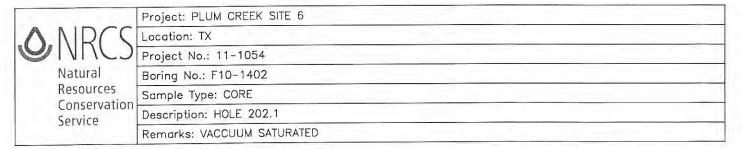
Project: PLUM CREEK SITE 6 Boring No.: F10-1402 Sample No.: 11-1054 Test No.: 1

Soil Description: HOLE 202.1 Remarks: VACCUUM SATURATED

Specimen Height: 3.09 in Specimen Area: 1.62 in^2 Specimen Volume: 81.98 cc


Location: TX
Tested By: SKM
Test Date: 5/23/11
Sample Type: CORE

Project No.: 11-1054 Checked By: SKM Depth: 5-7' Elevation: N/A


Liquid Limit: ---Plastic Limit: ---Measured Specific Gravity: 2.74

Cap Mass: 0 gm

	Time min	Axial Displacement in	Axial Strain %	Load 1b	Corrected Area in^2	Corrected Vertical Stress psi	Corrected Shear Stress psi
3 0. 4 0. 5 0. 6 0. 7 1 8 1 10 1 11 1 12 1 13 1 14 2 15 22 1 17 22 1 18 2 19 20 3 21 22 23 3 22 23 3 24 3 25 26 4 27 28 29 4 30 4 31 32 5 33 34 5	min 0 17062 33728 50407 0.6706 83727 .0041 .1706 .3373 1.504 .1706 .8372 2.004 .1706 .8372 3.004 .1706 .8372 3.004 .1705 .3372 4.004 .1705 .3372 4.504 .1705 .3372 4.504 .1705 .3372 5.504 .1705	0 0.0049573 0.0098682 0.015659 0.01969 0.024879 0.029744 0.034979 0.040307 0.045542 0.050685 0.055086 0.060553 0.065371 0.070931 0.075702 0.080984 0.085571 0.090945 0.096921 0.10132 0.10665 0.11152 0.11592 0.11592 0.12699 0.13195 0.13741 0.14765 0.14765 0.15252 0.15794 0.16313 0.16841	% 0.16048 0.31946 0.50694 0.63742 0.80541 0.96289 1.1324 1.3048 1.4743 1.6408 1.7833 1.9603 2.1163 2.2962 2.4507 2.6217 2.7702 2.9442 3.1376 3.2801 3.4526 3.6101 3.7526 3.9295 4.111 4.2715 4.4485 4.5865 4.7799 4.9374 5.1129 5.2809 5.4519	0.172 1.0163 1.2821 1.2196 1.6887 2.0639 2.5174 3.0177 3.5337 4.0653 4.5813 5.1129 5.6133 6.0667 6.5045 6.958 7.3645 7.7711 8.115 8.4434 8.7092 8.9907 9.2096 9.4285 9.6474 9.8506 10.038 10.523 10.586 10.586 10.57 10.57 10.586 10.586 10.586 10.586 10.586	in^2 1.6196 1.6222 1.6248 1.6278 1.6353 1.6381 1.6441 1.6438 1.64519 1.6576 1.6576 1.6657 1.6663 1.6657 1.66827 1.6725 1.6827 1.6827 1.6827 1.6827 1.689 1.6918 1.6974 1.7009 1.7037 1.7068 1.7099 1.713	psi 0.1062 0.62653 0.78913 0.74922 1.036 1.2641 1.5394 1.8422 2.1534 2.4731 2.7823 3.1007 3.398 3.6666 3.924 4.1909 4.428 4.6653 4.8631 5.0498 5.2011 5.3596 5.4812 5.6031 5.7227 5.8322 5.9334 6.0331 6.1073 6.1868 6.2133 6.1927 6.1269 6.0702	psi 0.053099 0.31326 0.39457 0.37461 0.51801 0.63206 0.7697 0.9211 1.0767 1.2366 1.3912 1.5503 1.699 1.8333 1.962 2.214 2.3327 2.4316 2.5249 2.6006 2.6798 2.7406 2.8613 2.9161 2.9667 3.0165 3.0165 3.0536 3.0934 3.1067 3.0934 3.0934 3.0934 3.0934 3.0934
36 5 37 6 38 6	.6705 .8372 .0039 .1705 .3374	0.17299 0.178 0.18374 0.18893 0.1938	5.6003 5.7623 5.9483 6.1163 6.2738	10.226 10.054 9.7255 9.2408 8.9125	1,7156 1,7186 1,722 1,7251 1,728	5.9604 5.8501 5.6478 5.3568 5.1578	2.9802 2.925 2.8239 2.6784 2.5789

Symbol		Ф		
Test No.		1		
	Diameter, in	1.436		
	Height, in	3.089		
<u>-</u>	Water Content, %	27.34		
Initial	Dry Density, pcf	96.09		
	Saturation, %	96.03		
	Void Ratio	0.78		
Ur	confined Compressive Strength, psi	6.213		
Ur	ndrained Shear Strength, psi	3.107		
Tir	ne to Failure, min	5.004		
St	rain Rate, %/min	11		
Me	easured Specific Gravity	2.74		
Lie	quid Limit			
PI	astic Limit			
PI	asticity Index			
Failure Sketch			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

SHEAR TEST DATA

QU I	CELL NO. BURETTE NO. MACHINE NO. COMPACTED	3		LOAD CH STRAIN CH P.P. CH		20) D. <u> - 0</u> 5484 TE <u>5</u> 2	54
	UNDISTURBED			Gs 2.74 ·	TEOT DAT	1	
Cell	PSIBase		I Test_	PSI B	RATE OF S		in./%)min.
TECHNI	CIAN SKA	AIA			CIAN SW		
DIAMETER		INITIAL	IN MACHIN		OHH	INITIAL	FINAL
TOP	IN.	1-410	1.150	WET WT. SPEC. + CAN	(GM.)		230.69
MIDDLE	IN.	1.404	1.443	DRY WT. SPEC. + CAN	(GM.)		194.55
воттом	IN.	1,402	1.421	WT. MOISTURE	(GM.)		
MEAN DIAMETER	IN.	1.405	1	WT. CAN	(GM.)		70.36
HEIGHT	IN.	2,999	3.089	The same of the sa	itial (GM.)		
MOIST WT.	GM.	15272	160.69	PERCENT MOISTURE	21.02	27.34	27.05
END AREA	IN. ²	1.550		DRY UNIT WEIGHT	(GM/CC)		
VOLUME	IN. ⁹	4.650	5,003	PERCENT POROSITY			
MOIST UNIT WT.	PCF	125.12	12236	THEORETICAL SAT. %			
CONSC	DLIDATION	DATA		PERCENT SAT. @ START			
TECHNI	CIAN	'	-	FAILURE SKETCH	17		
EXTENSIOMETER	READINGS	DATE: /	-		12419		
INITIAL READING FINAL READING HT. DEFORMATIO	IN.	TIME: /					
INITIAL BURETTE P	READING	,	CM			/	
FINAL BURETTE RE	EADING	/	СМ			550	
VOL. CHANGE	CC x 0.061		IN. ³		1)	
CONS. VOLUME OF			IN.3		و ر		
CONS. HEIGHT OF		1	IN.		1550	1 .	
AVG. AREA OF COM	7	-	IN. 2		1	Y	
CONSOLIDATED M			PCF		1.		
CONCOLIDATED IN	J.J. Citil IVI.		101	-			
				INITIAL DRY DENSITY FINAL DRY DENSITY	~		
REMARKS:	1410		2989 3000 3009	1443	3106 3094 3067	horizont	neig uneu
	1411)			1414			
	1394		Ohaeles -	1421		. 5	22 111
	10		Checked	l by: 5k	-VV DE	ate:/	00011

Shear Test Data Specimen #1

Project: PLUM CREEK SITE 6

State: TX

Lab No: 11-1054 Test Specifications:

Specfic Gravity (Gs): 2.74

Shear Cell No .:

Confining Pressure: psi

Top Diameter: 1.435 inches

Middle Diameter: 1.443 inches (Either measure two middle diameters

Middle Diameter: 1.443 inches or enter in the same value)

Bottom Diameter:

Height of Specimen:

Moist Weight of Specimen:

Mean Diameter:

1.421 inches
3.089 inches
160.69 gms.
1.436 inches

End Area: 1.620 sq. inches
Volume of Specimen: 5.003 cubic inches

Moist Unit Weight: 122.36 pcf (multiply gms/cubic inch by 3.8095 to

to achieve pcf)

Extensiometer Height Deformation: inches Initial Volume of Base Cell: ml. Final Volume of Base Cell: ml.

Is the Large Burette being Used? no (yes or no)

Calibrated Area of the Base Burette: cc

Burette Volume: cc note 1.00 ml = 1.00 cc

Burette Volume: cubic inches
Consolidated Volume: 5.003 cubic inches
Assumed Consolidated Height: inches

Assumed Height after Consolidation: 3.089 inches

Moist Weight of Specimen + Can:

Dry Weight of Specimen + Can:

Weight of Can:

Weight of Water:

Weight of Dry Specimen:

230.69 gms.

196.55 gms.

70.36 gms.

34.14 gms.

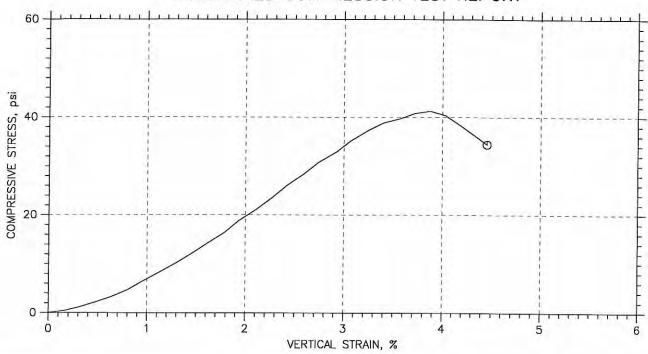
126.19 gms.

Initial Water Content: 27.34 percent Initial Dry Density: 96.09 pcf Percent Saturated: 96.01 percent

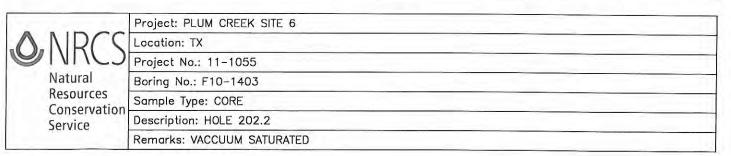
Initial Void Ratio: 0.780

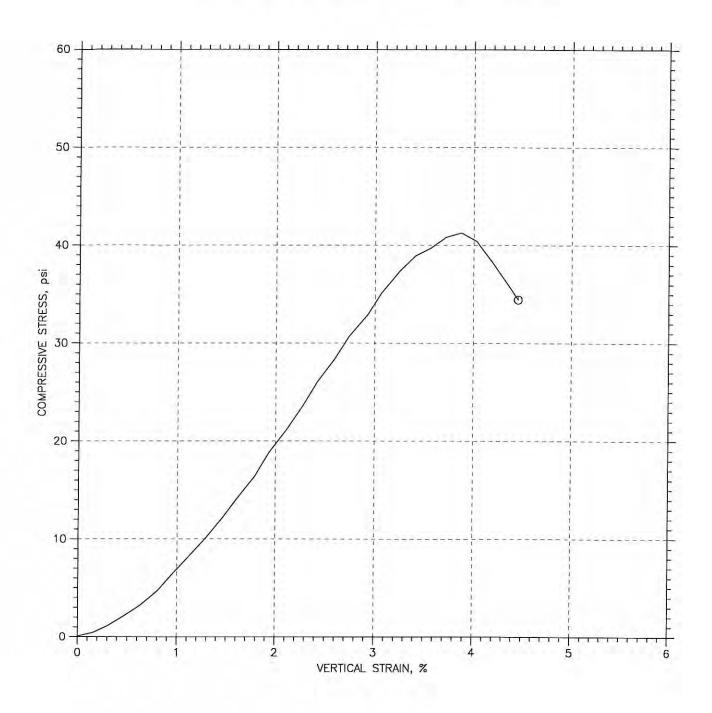
Initial Diameter: 1,436 inches Initial Height: 3.089 inches

Final Water Content: 27.05 percent Final Dry Density: 96.09 pcf Percent Saturated: 95.01 percent


Final Void Ratio: 0.780

Final Diameter*: 1.436 inches
Final Height: 3.089 inches


*Diameter is estimated to be unchanged


Checked by: SKM

FIELD SAMPLE NO.	DEPTH FROM	(FT.) TO		SAMPLE LOCATION		TYPE OF SAMPLE	LABORATORY NO.
F10-1403	10	14'	202.2			3"Shelbu	111-1055
COLOR		LATIVE DISTURE	CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER (T.S.F.)	VISUAL CLASSIFICATION (USCS)
L+ Brown	Day	MP	V.S1,77	MASGED	Ploury	4.5	ML
w 22.4 % Ya	164 g/c	x			DESCRIBED BY	M, RM	
Plastic T	Loose Discon	J	TOZ" LOZ" LOZ" LOZ" LOZ" LOZ" LOZ" LOZ LOZ	Topha half a Gypsu block	min Samp	d in I piece bout.	stiff,
<u>¥</u>			17		Pr	o tos taki	N2

Sy	mbol	Ф			
Те	st No.	1			
	Diameter, in	1.414			
	Height, in	3.066			
Initial	Water Content, %	24.53			
<u>.</u>	Dry Density, pcf	101.7			
	Saturation, %	99.16			
	Void Ratio	0.675			
Un	confined Compressive Strength, psi qu	41.27			
Un	drained Shear Strength, psi 94/2 => Cu=	20.64 ps, :	2972 PJF		
Tin	ne to Failure, min	4.0013	Local Co = 2970	PSF @ 392	A
Str	rain Rate, %/min	1		smain	
Ме	asured Specific Gravity	2.73			
Liq	uid Limit	Are .			
Plo	astic Limit	755			
Plo	asticity Index				
Fai	ilure Sketch				

	Project: PLUM CREEK SITE 6	Location: TX	Project No.: 11-1055			
M.NIRCCI	Boring No.: F10-1403	Tested By: SKM	Checked By: SKM			
	Sample No.: 11-1055	Test Date: 5/24/11	Depth: 10-14'			
Natural	Test No.: 1	Sample Type: CORE	Elevation: N/A			
Resources Conservation	Description: HOLE 202.2					
Service	Remarks: VACCUUM SATURATED					

Project: PLUM CREEK SITE 6 Boring No.: F10-1403 Sample No.: 11-1055 Test No.: 1

Soil Description: HOLE 202.2 Remarks: VACCUUM SATURATED

Specimen Height: 3.07 in Specimen Area: 1.57 in^2 Specimen Volume: 78.90 cc

Liquid Limit: ---Plastic Limit: ---Measured Specific Gravity: 2.73

0

160.1 128.56 128.56 24.53 0.68 99.16 126.68 101.72

Location: TX Tested By: SKM Test Date: 5/24/11 Sample Type: CORE

Project No.: 11-1055 Checked By: SKM Depth: 10-14' Elevation: N/A

Cap Mass: 0 gm

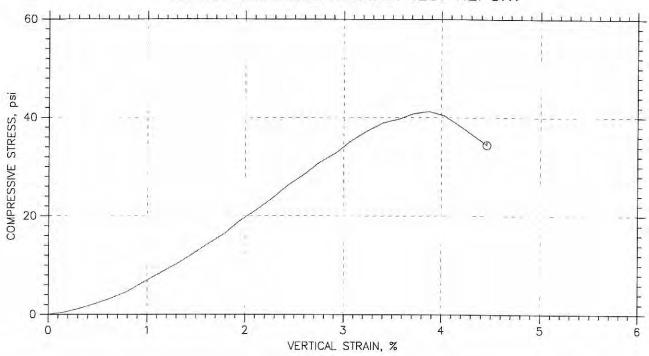
Water Content Information

Container ID
Wt. Container, gm
Wt. Container + Wet Soil, gm
Wt. Container + Dry Soil, qm
Wt. Dry Soil, gm
Water Content, %
Void Ratio
Degree of Saturation, %
Wet Unit Weight, pcf
Dry Unit Weight, pcf

Project: PLUM CREEK SITE 6 Boring No.: F10-1403 Sample No.: 11-1055 Test No.: 1

Soil Description: HOLE 202.2 Remarks: VACCUUM SATURATED

Specimen Height: 3.07 in Specimen Area: 1.57 in^2 Specimen Volume: 78.90 cc


Location: TX Tested By: SKM Test Date: 5/24/11 Sample Type: CORE

Project No.: 11-1055 Checked By: SKM Depth: 10-14' Elevation: N/A

Cap Mass: 0 gm

Liquid Limit: ---Plastic Limit: ---Measured Specific Gravity: 2.73

 vorume. 76	90 CC	Meas	ured Specif	ic Gravity.	2.75	
Time min	Axial Displacement in	Axial Strain %	Load 1b	Corrected Area in^2	Corrected Vertical Stress psi	Corrected Shear Stress psi
0.17065	0 0.0047256	0 0.15413	0.093816 0.67234	1,5703 1.5727	0.059743 0.4275	0.029871 0.21375
0.33732	0.0093586 0.014408	0.30524 0.46994	1.7981 3.4086	1.5751 1.5777	1.1416 2.1605	0.57079 1.0802
0.66673	0.019458 0.024555	0.63465 0.80087	5.1755 7.4427	1.5804 1.583	3,2749 4,7016	1.6374
1.0003	0.029049 0.034238	0.94744 1.1167	10.116	1.5853 1.5881	6.3812 8.2115	3.1906
1.3334	0.034238 0.039704 0.044754	1.295	16.152	1.5909	10.153	4.1058 5.0763
1.5003	0.049526	1.4597 1.6153	19.373 22.735	1.5936 1.5961	12.157 14.244	6.0784 7.1219
1.8334	0.054808 0.059255	1.7876 1.9327	26.221 30.146	1.5989 1.6013	16.4 18.826	8.1998 9.4132
2.1669 2.3336	0.064815 0.069819	2.114 2.2772	34.055 37.98	1.6042 1.6069	21.228 23.635	10.614 11.818
2.5005 2.6669	0.074174 0.079501	2.4192 2.593	41.904 45.735	1.6093 1.6121	26.04 28.369	13.02 14.185
2.8336 3.0004	0.083949 0.089648	2.7381 2.9239	49.55 53.193	1.6145 1.6176	30.69 32.884	15.345 16.442
3.1669 3.3338	0.093956 0.09947	3.0645 3.2443	56.899 60.542	1.62 1.623	35.124 37.303	17.562 18.652
3.5009 3.6674	0.10443 0.10943	3.406 3.5692	63.247 64.717	1.6257 1.6284	38.905 39.742	19.452 19.871
3.8343 4.0013	0.11397 0.11879	3.7172 3.8744	66.562 67.422	1.6309 1.6336	40.812 41.272	20.406
4.1679	0.12361 0.12912	4.0315 4.2114	66.093 62.278	1.6363 1.6394	40.392 37.989	20.196 18.995
4.5029 4.5822	0.13422 0.13663	4.3776	58.494 56.602	1.6422 1.6436	35,619 34,439	17.81 17.219

Sy	mbol	0		
Test No.		1		
	Diameter, in	1.414		
	Height, in	3.066		
loi	Water Content, %	24.53		
Initial	Dry Density, pcf	101.7		
	Saturation, %	99.16		
	Void Ratio	0.675		
Ur	confined Compressive Strength, psi	41.27	1-11	
Ur	drained Shear Strength, psi	20.64		
Tir	ne to Failure, min	4.0013	1	
St	ain Rate, %/min	1		
Me	asured Specific Gravity	2.73		
Lic	uid Limit	444		
Ple	ostic Limit	guy		
Ple	sticity Index			
Failure Sketch			-00	
		1		

	Project: PLUM CREEK SITE 6
~	Location: TX
)	Project No.: 11-1055
	Boring No.: F10-1403
.~	Sample Type: CORE
	Description: HOLE 202.2
	Remarks: VACCUUM SATURATED

SHEAR TEST DATA

CELL	NO		J.	LOAD CH.			
	TTE NO			STRAIN CH.		7.1	
qu MACH	INE NO.	3		P.P. CH	LAB. NO	o. <u>//-/</u>	555
CUBAR					11-10	25564	
	PACTED				TEST DAT	re 5/24	111
BP UNDI	STURBED	/		Gs = 2.73.			
						T	
Cell P	SI Base	PSI T	est	PSI B	RATE OF S	STRAIN	in./%/min.
	IMEN DATA			600-700-700-700	URE DAT		
TECHNICIAN	7_5/4~	•		TECHNI	CIAN_SH	h	
DIAMETER		TAL INM				INITIAL	FINAL
TOP I	N. 1.3	98 1.4	110	WET WT. SPEC. + CAN	(GM.)		230.39
MIDDLE	N. 1.4	03 1.6	414	DRY WT. SPEC. + CAN	(GM.)		199118
BOTTOM I	N. 1,40			WT. MOISTURE	(GM.)	•	
MEAN DIAMETER IN.	1.40			WT. CAN	(GM.)	trace and	70.62
HEIGHT II	N. 3,00	3 3.0	566	WT DRY SOIL	1:a\(GM.)		
MOIST WT. GI		E1 160	0.10 F	PERCENT MOISTURE	21.97	24,53	2428
	N.º 1.50		570	DRY UNIT WEIGHT	(GM/CC)		
VOLUME II	V.9 4,6		815 F	PERCENT POROSITY			
MOIST UNIT WT. F	PCF 128	85 12	6.68	THEORETICAL SAT. %			
CONSOLII	DATION DAT	ΓA	F	PERCENT SAT. @ START			
TECHNICIAN		,		FAILURE SKETCH	128.56		
EXTENSIOMETER READ	INGS DATE	Ŷ —					
INITIAL READING	IN. TIME:					11)	
FINAL READING	IN. TIME:						
HT. DEFORMATION	/IN.					1	
	/						
INITIAL BURETTE READ			M			1	
FINAL BURETTE READIN	G	С	M				
VOL. CHANGE	CC x 0.061	41	V.3			7	
CONS, VOLUME OF SPEC	\-		V.3				
CONS. HEIGHT OF SPEC		3	V. V.			/	
AVG. AREA OF CONS. SF			V. 2		-		
CONSOLIDATED MOIST U			CF CF				
COMPOSITION LED MOIST (DINIT WIT.		OF .				
			- 1	INITIAL DOV DENGTY	101.7	2	
					-		
DEM A DICC.	Tular	2001.5					
REMARKS.	1271	3003		1408	3047		Hor
V		5003		121.12			1 2
"X"	1408	200		1415	4 2		
1 N							
/ \	1405			1421			
	111 000	Che	ocked i	- 11	Dr	to 5	126111
REMARKS:	1108	3003 3003 2003 Che	ecked i	1412 1415 1416 1421	1= 101.7 3049 64 68		126111

Shear Test Data Specimen #1

Project: PLUM CREEK SITE 6

State: TX

Lab No: 11-1055 Test Specifications: Specific Gravity (Gs): 2.73

Shear Cell No.:

Confining Pressure: psi

Top Diameter: 1.410 inches

Middle Diameter:

1.414 inches (Either measure two middle diameters or enter in the same value)

Middle Diameter: 1.414 inches
Bottom Diameter: 1.418 inches
Height of Specimen: 3.066 inches

Moist Weight of Specimen:

Mean Diameter:

End Area:

1.000 miches

1.60.10 gms.

1.414 inches

1.570 sq. inches

Volume of Specimen: 4.815 cubic inches

Moist Unit Weight: 126.68 pcf (multiply gms/cubic inch by 3.8095 to

to achieve pcf)

Extensiometer Height Deformation: inches Initial Volume of Base Cell: ml. Final Volume of Base Cell: ml.

Is the Large Burette being Used? no (yes or no)

Calibrated Area of the Base Burette: cc

Burette Volume: cc note 1.00 ml = 1.00 cc

Burette Volume: cubic inches
Consolidated Volume: 4.815 cubic inches

Assumed Consolidated Height: 4.813 cubic inches

Assumed Height after Consolidation: 3.066 inches

Moist Weight of Specimen + Can:

Dry Weight of Specimen + Can:

Weight of Can:

Weight of Water:

Weight of Dry Specimen:

230.39 gms.

199.18 gms.

70.62 gms.

31.21 gms.

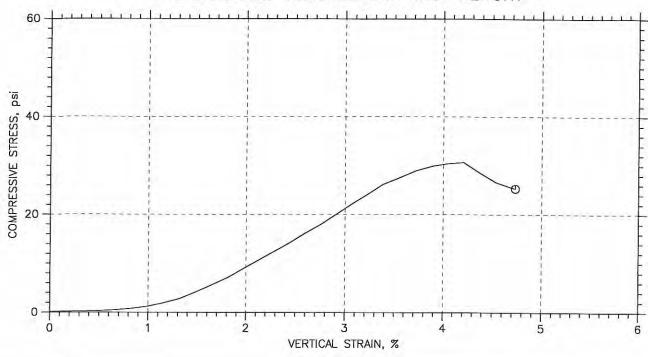
128.56 gms.

Initial Water Content: 24.53 percent Initial Dry Density: 101.72 pcf
Percent Saturated: 99.15 percent

Initial Void Ratio: 0.675

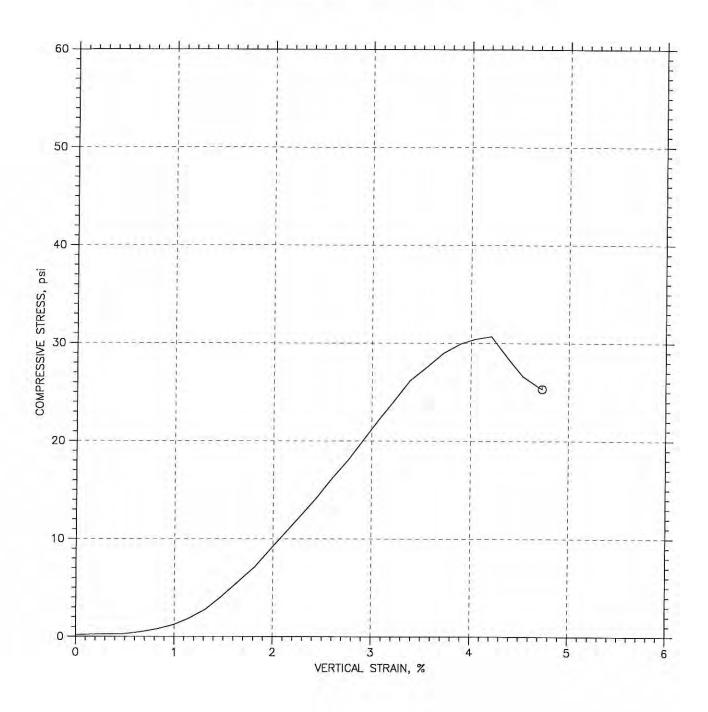
Initial Diameter: 1.414 inches Initial Height: 3.066 inches

Final Water Content: 24.28 percent
Final Dry Density: 101.72 pcf
Percent Saturated: 98.11 percent


Final Void Ratio: 0.675

Final Diameter*: 1.414 inches
Final Height: 3.066 inches

*Diameter is estimated to be unchanged


Checked by: SKM

MATERIA TESTING RE		S. DEPARTMENT of A AL RESOURCES CONS		UNDIST CHAI	TURBED S RACTERIS	AMPLE STICS
PROJECT and STATE	Creek	cle. TX				
TESTED AT		COLNING	APPROVED BY		DATE	4-11
FIELD SAMPLE NO.	DEPTH (FT.) FROM TO		SAMPLE LOCATION		TYPE OF SAMPLE	LABORATORY NO.
F10-1404		2023			3"Shelbu	111-1056
COLOR	RELATIVE MOISTURE	CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER (T.S.F.)	VISUAL CLASSIFICATION (USCS)
LIBrown	Damp	VISTIFF	Crypsum	Floury	_	111
				· ·		
w 21.9 % Yd	1.67 g/cc			DESCRIBED BY	Km, Ru	
1.01.	3"	REMARKS			MINI RIVI	84
Auger hole	SAVED 1314	10"		Through		
FIELD SAMPLE NO.	DEPTH (FT.)		SAMPLE LOCATION		hotostat TYPE OF SAMPLE	LABORATORY NO.
F10-1406	20 205	2025			3"Shelh	11-1057
COLOR	RELATIVE MOISTURE	CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER (T.S.F.)	VISUAL CLASSIFICATION (USCS)
HBrown	Damp	Vistief	bypsum	Hours	-	ML
ω <u>21, 3</u> % γ _d	165 alco	4		DESCRIBED BY	SKM. RM	
- 110	3	REMARKS		DESCRIBED BY	SKM. RM	7. ?
Augeste Discussiones 24	Discussed at Loose Mark Disturbed at Loose Mark Loose Mark Disturbed at Loose SANED SANED	Hastic Eroke	Block Gyps Unit	ey materi um throughta	al uniforghaut sa H20 tak	mple

Sy	rmbol	Ф			
Te	st No.	1			
	Diameter, in	1.411			
Initial	Height, in	3.064			
	Water Content, %	24.70			
	Dry Density, pcf	101.5			
	Saturation, %	99.93			
	Void Ratio	0.672			
Ur	confined Compressive Strength, psi 9n	30.68			
Undrained Shear Strength, psi 94/2 = Cu:		رم 15.34	= 2209 psf		
Time to Failure, min		4.3373	Cented on:	22/VCSF &	
St	rain Rate, %/min	1		422 Sirain	
Measured Specific Gravity		2.72			
Lic	uid Limit				
Plo	astic Limit				
Plo	asticity Index				
Failure Sketch					

ISLANDAET!	Project: PLUM CREEK SITE 6
.A. NIRCC	Location: TX
	Project No.: 11-1056
Natural	Boring No.: F10-1404
Resources Conservation	Sample Type: CORE
Service	Description: HOLE 202.3
	Remarks: VACCUUM SATURATED

	Project: PLUM CREEK SITE 6	Location: TX	Project No.: 11-1056			
A.NRCC	Boring No.: F10-1404	Tested By: SKM	Checked By: SKM			
SIMICO	Sample No.: 11-1056	Test Date: 5/24/11	Depth: 15-16'			
Natural	Test No.: 1	Sample Type: CORE	Elevation: N/A			
Resources Conservation	Description: HOLE 202.3					
Service	Remarks: VACCUUM SATURATED					

Project: PLUM CREEK SITE 6
Boring No.: F10-1404
Sample No.: 11-1056
Test No.: 1

Soil Description: HOLE 202.3 Remarks: VACCUUM SATURATED

Specimen Height: 3.06 in Specimen Area: 1.56 in^2 Specimen Volume: 78.51 cc

Location: TX
Tested By: SKM
Test Date: 5/24/11
Sample Type: CORE

Project No.: 11-1056 Checked By: SKM Depth: 15-16' Elevation: N/A

Cap Mass: 0 gm

Liquid Limit: ---Plastic Limit: ---Measured Specific Gravity: 2.72

Water Content Information

Container ID
Wt. Container, gm
Wt. Container + Wet Soil, gm
Wt. Container + Dry Soil, gm
Wt. Dry Soil, gm
Water Content, %
Void Ratio
Degree of Saturation, %
Wet Unit Weight, pcf
Dry Unit Weight, pcf

0 159.24 127.7 127.7 24.70 0.67 99.93 126.62 101.54

Project: PLUM CREEK SITE 6 Boring No.: F10-1404 Sample No.: 11-1056 Test No.: 1

Soil Description: HOLE 202.3 Remarks: VACCUUM SATURATED

Specimen Height: 3.06 in Specimen Area: 1.56 in^2 Specimen Volume: 78.51 cc

Liquid Limit: ---Plastic Limit: ---Measured Specific Gravity: 2.72

Location: TX Tested By: SKM Test Date: 5/24/11 Sample Type: CORE

Project No.: 11-1056 Checked By: SKM Depth: 15-16' Elevation: N/A

Cap Mass: 0 gm

Time min		Axial Strain %	Load 1b	Corrected Area in^2	Corrected Vertical Stress psi	Corrected Shear Stress psi
1 0 0.17075 3 0.33742 4 0.50418 5 0.67073 6 0.8374 7 1.0042 8 1.1707 9 1.3374 10 1.5042 11 1.6707 12 1.8374 13 2.0042 14 2.1707 15 2.3374 16 2.5041 17 2.6707 18 2.8373 19 3.0041 20 3.1707 21 3.3373 22 3.5041 23 3.6706 24 3.8373 25 4.0041 26 4.1706 27 4.3373 28 4.5041 29 4.6706 30 4.8373 31 4.8584	0.0051889 0.010054 0.014964 0.020014 0.02525 0.030392 0.035071 0.044986 0.049943 0.055595 0.060228 0.064908 0.069911 0.074961 0.079548 0.084829 0.090065 0.094512 0.099192 0.10364 0.10883 0.11392 0.11399 0.12375	0.16935 0.32812 0.4884 0.65321 0.82407 0.99191 1.1446 1.317 1.4682 1.63 1.8145 1.9657 2.1184 2.2817 2.4465 2.2817 2.4465 2.7686 2.9394 3.0846 3.2373 3.3825 3.5518 3.7182 3.8966 4.0387 4.2096 4.3835 4.5347 4.7131 4.7312	0.25017 0.35963 0.42217 0.43781 0.75052 1.2352 1.9232 2.9239 4.4093 6.3638 8.6779 11.32 14.119 16.887 19.811 22.844 25.909 29.177 32.914 36.056 39.215 42.342 44.641 47.064 48.753 41.701 41.576	1.5637 1.5668 1.5713 1.5739 1.5767 1.5793 1.5845 1.5845 1.587 1.5896 1.5926 1.595 1.6002 1.6029 1.6029 1.6053 1.6082 1.611 1.6134 1.6134 1.6184 1.6212 1.6241 1.6241 1.6241 1.6275 1.6354 1.6354 1.6379 1.6413	0.15999 0.2296 0.2691 0.27862 0.47684 0.78345 1.2177 1.8485 2.7827 4.0101 5.4593 7.1083 8.8521 10.571 12.38 14.252 16.139 18.143 20.43 22.348 24.267 26.163 27.535 28.979 29.9649 30.409 30.68 28.454 26.614 25.412 25.331	0.079996 0.1148 0.13455 0.13931 0.23842 0.39173 0.60887 0.92425 1.3914 2.005 2.7296 3.5541 4.426 5.2854 6.1902 7.1259 8.0695 9.0713 10.215 11.174 12.133 13.081 13.767 14.49 14.982 15.204 15.34 14.227 13.307 12.706 12.665

Symbol		Ф		
Test No.		1		
Initial	Diameter, in	1.411		
	Height, in	3.064		
	Water Content, %	24.70 ,		
	Dry Density, pcf	101.5		
	Saturation, %	99.93		
	Void Ratio	0.672		
Unconfined Compressive Strength, psi		30.68		
Undrained Shear Strength, psi		15.34		
Time to Failure, min		4.3373		
Strain Rate, %/min		1		
Measured Specific Gravity		2.72		
Lic	quid Limit			
Ple	astic Limit	Hat		
Ple	asticity Index	1 2 2 3		
Failure Sketch				

Service

Project: PLUM CREEK SITE 6 Location: TX

Project No.: 11-1056 Boring No.: F10-1404

Sample Type: CORE

Description: HOLE 202.3

Remarks: VACCUUM SATURATED

SHEAR TEST DATA

	ELL NO.	-		LOAD CH.	-		
	URETTE NO.	3	_	STRAIN CH.	_	11-11	056
	ACHINE NO.			P.P. CH	_ LAB. NO	56gu	754
CUBAR	OMPACTED			,			
	OMPACTED		_	Gs_2.72.	TEST DA	re _5/20	11.71
BP U	INDISTURBED	-		GS			
Cell	PSI Base_	- pc	I Toot	DOL D	DATE OF	TOAN I	in 16/2 Imin
	ECIMEN D.		or rest	PSI B	RATE OF S		in./%/min.
	IAN SIM			TECHNIC	_//	- 1	
DIAMETER			IN MACHIN	E		INITIAL	FINAL
TOP	IN.	1.398	1.409	WET WT. SPEC. + CAN	(GM.)		229.67
MIDDLE	IN.	1.398	1411	DRY WT. SPEC. + CAN	(GM.)		198.47
воттом	IN.	1.398	1.414	WT. MOISTURE	(GM.)		
MEAN DIAMETER	IN.	1.398	11411	WT. CAN	(GM.)		70.77
HEIGHT	IN.	2993	3.064	WT DRY SOIL IN	(GM.)		
MOIST WT.	GM.	155.00	159.24	PERCENT MOISTURE	1.38	24.70	24.43
END AREA	IN. ²	1535	1.564	DRY UNIT WEIGHT	(GM/CC)		
VOLUME	IN. ⁹	4.594	4.791	PERCENT POROSITY			
MOIST UNIT WT.	PCF	128.53	124102	THEORETICAL SAT. %			
CONSO	LIDATION	DATA		PERCENT SAT. @ START			
TECHNIC	IAN			FAILURE SKETCH /	27.70		
EXTENSIOMETER R	EADINGS	DATE:			51110	117	
INITIAL READING	IN.	TIME:				111	
FINAL READING	IN.	TIME:			1,-		
HT. DEFORMATIO					()	10-	1
NATIONAL DIDETTE DI	TARINO		014		1.	850	
INITIAL BURETTE RE			CM			V	
FINAL BURETTE REA	ADING		CM		1	,	
VOL. CHANGE	CC x 0.061		IN.3		1		
CONS. VOLUME OF	SPECIMEN	1	IN. ³		1		/
CONS. HEIGHT OF S		1	IN.				
AVG. AREA OF CON	S. SPECIMEN		IN.2				4
CONSOLIDATED MO			PCF				1
				State of the same	Description		
				INITIAL DRY DENSITY FINAL DRY DENSITY		154	
REMARKS:	1229	30	02 1	1413 30	76		9
	1314	29	96	11.15	76 62 53		Bro!
10	1400	29	80	1410	19		
PitiA		,					
1.1	1290			1414			
. X	1399			1414			0

Shear Test Data Specimen #1

Project: PLUM CREEK SITE 6

State: TX

Lab No: 11-1056 Test Specifications:

Specfic Gravity (Gs): 2.72

Shear Cell No.:

Confining Pressure: psi

Top Diameter: 1.409 inches

Middle Diameter: 1.411 inches (Either measure two middle diameters

Middle Diameter: 1.411 inches or enter in the same value)
Bottom Diameter: 1.414 inches

Height of Specimen:

Moist Weight of Specimen:

Mean Diameter:

End Area:

3.064 inches
159.24 gms.
1.411 inches
1.564 sq. inches

Volume of Specimen: 4.791 cubic inches

Moist Unit Weight: 126.62 pcf (multiply gms/cubic inch by 3.8095 to

to achieve pcf)

Extensiometer Height Deformation: inches Initial Volume of Base Cell: ml. Final Volume of Base Cell: ml.

Is the Large Burette being Used? no (yes or no)

Calibrated Area of the Base Burette: cc

Burette Volume: cc note 1.00 ml = 1.00 cc

Burette Volume: cubic inches

Consolidated Volume: 4.791 cubic inches

Assumed Consolidated Height: inches

Assumed Height after Consolidation: 3.064 inches

Moist Weight of Specimen + Can:

Dry Weight of Specimen + Can:

Weight of Can:

Weight of Water:

Weight of Dry Specimen:

229.67 gms.

198.47 gms.

70.77 gms.

31.20 gms.

127.70 gms.

Initial Water Content: 24.70 percent Initial Dry Density: 101.54 pcf
Percent Saturated: 99.91 percent

Initial Void Ratio: 0.672

Initial Diameter: 1.411 inches Initial Height: 3.064 inches

Final Water Content: 24.43 percent Final Dry Density: 101.54 pcf 98.84 percent

Final Void Ratio: 0.672

Final Diameter*: 1.411 inches
Final Height: 3.064 inches

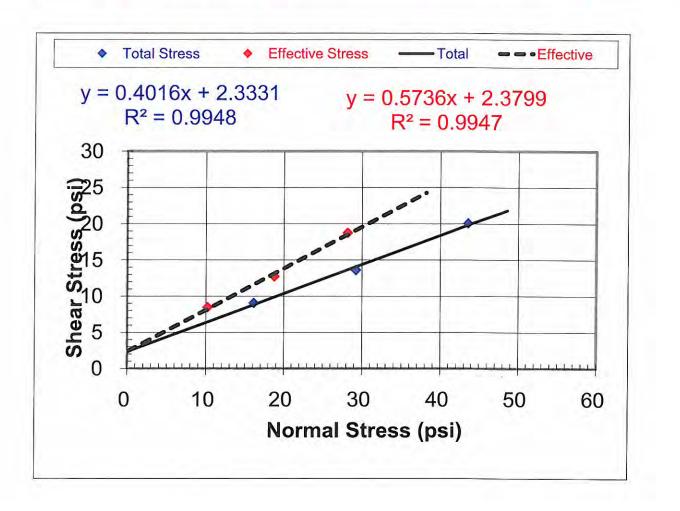
*Diameter is estimated to be unchanged

Checked by: SKM

Mohr Circle Program

SITE NAME: Plum Creek Site 6

STATE: TX
SAMPLE NO: 11-1058


F10-1409 Total Strength Parameters: Zero Cohesion: PHI: 21.9 degrees 21.9 degrees Slope y= Failure Criterion: C: 336 psf 2.33 psi Effective Strength Parameters: Maximum Dev. Stress PHI': 29.8 degrees 29.8 degrees Slope y= ✓ Maximum Stress Ratio 343 psf C': 2.38 psi Max. Pore Pressure Stress path analysis from p-q plot: <= 10% Strain</p> PHI': 30 6 degrees Selected Points

C': 3/7

psf

(All inputed values in the chart are in psi)

CELL PRESSURE	DEVIATOR STRESS AT FAILURE	PORE PRESSURE AT FAILURE	PERCENT STRAIN (Optional Entry)
10	19.5	4.7	3.7
20	29.3	8.6	4.2
30	43.2	12.7	4.9

CONSOLIDATED UNDRAINED TRIAXIAL TEST 60 Max. Shear c = 4.16 psi $\phi = 21.7$ $tan \phi = 0.40$ 40 psi ō 20 0 20 40 60 80 100 120 p', psi Symbol 0 Δ Sample No. 11-1058 11-1058 11-1058 70 Test No. 1 2 3 Depth 60 Diameter, in 1.392 1.399 1.397 Height, in 3.011 2.991 3.01 Water Content, % 27.7 27.9 27.4 50 Dry Density, pcf 96.63 96.79 四 96.81 ps. Saturation, % 98.4 99.6 97.8 DEVIATOR STRESS, Void Ratio 0.77 40 0.767 0.767 Water Content, % 31.4 29.8 28.5 Shear Dry Density, pcf 91.93 94.18 96. 30 Saturation*, % 100.0 100.0 100.0 Before Void Ratio 0.861 0.816 0.782 Back Press., psi 20 100.1 100.3 100.3 Ver. Eff. Cons. Stress, psi 9.925 19.67 29.7 Shear Strength, psi 12.67 16.39 24.09 10 Strain at Failure, % 17.7 18.8 19 Strain Rate, %/min 0.06 0.06 0.06 B-Value 0.00 0 0.00 0.00 0 10 15 20 Measured Specific Gravity 2.74 2.74 2.74 VERTICAL STRAIN, %

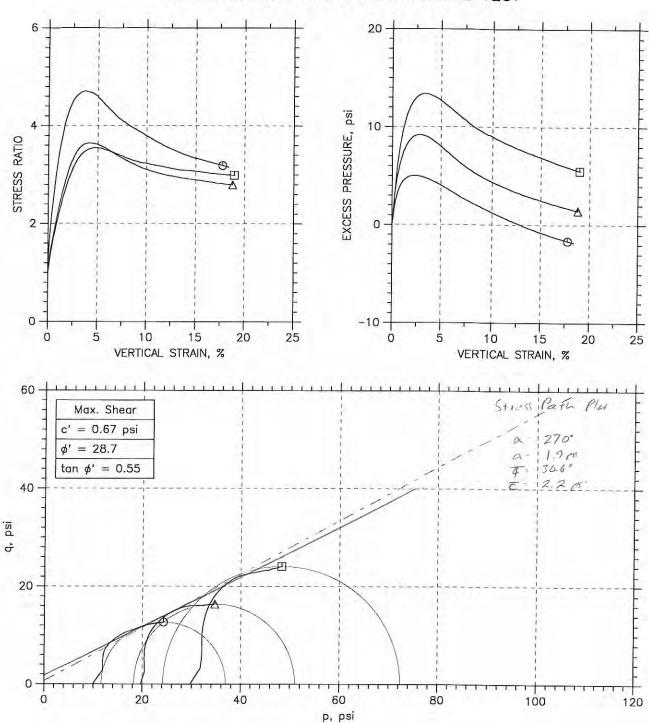
Plastic Limit

Project: PLUM CREEK SITE 6

Location: TX

Project No.: 11-1058

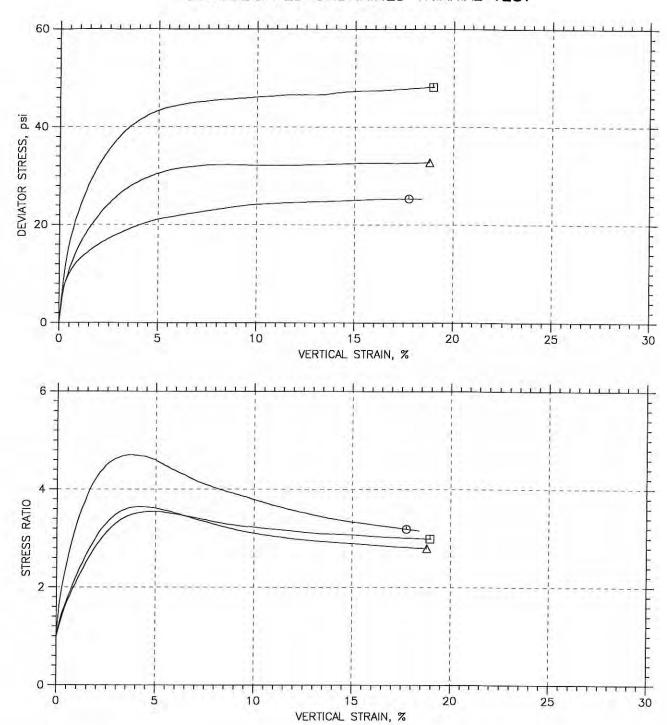
Boring No.: F10-1409


Sample Type: CORE

Description: HOLE 300.1

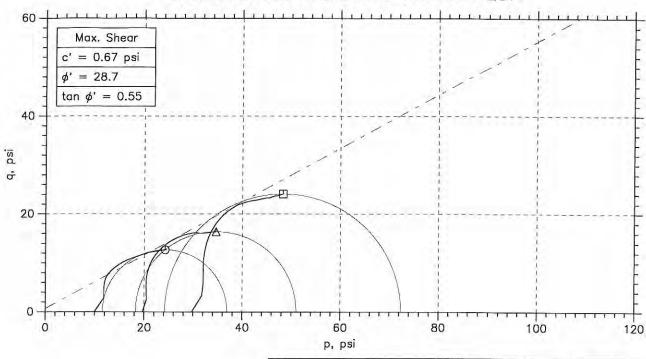
Remarks:

Liquid Limit



	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
O	11-1058	1		SKM	5/20/11	SKM		11-1058-10eng.dat
Δ	11-1058	2		SKM	5/20/11	SKM		11-1058-20eng.dat
U	11-1058	3		SKM	5/20/11	SKM		11-1058-30eng.dat

Natural
Resources
Conservation
Service


Project: PLUM CREEK SITE 6	Location: TX	Project No.: 11-1058						
Boring No.: F10-1409	Sample Type: CORE							
Description: HOLE 300.1								
Remarks:								

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
O	11-1058	1		SKM	5/20/11	SKM		11-1058-10eng.dat
Δ	11-1058	2		SKM	5/20/11	SKM		11-1058-20eng.dat
	11-1058	3		SKM	5/20/11	SKM		11-1058-30eng.dat

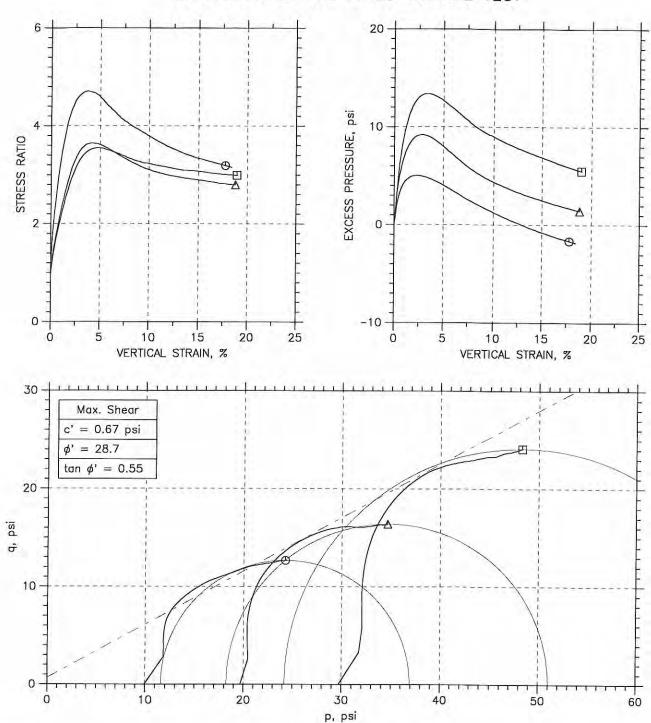
0	NRCS
	Natural
	Resources
	Conservation
	Service

Project: PLUM CREEK SITE 6	Location: TX	Project No.; 11-1058					
Boring No.: F10-1409	Sample Type: CORE						
Description: HOLE 300.1							
Remarks:							

8+	Ī	1	ļ r		
4			l L	1	
7-		 			
- 4				1	
6-				1	-:-
14				I I I	
5 - 4 -	~				
			1	1	
4 —		/-		1	- 1
				10	
3-	/	11122			7
- 1/			İ	1	
2-				+	
1				1	
1 +	5	,	10	15	2

Sy	mbol	Ф	Δ		
Sc	imple No.	11-1058	11-1058	11-1058	
Te	st No.	1	2	3	
De	pth				
	Diameter, in	1.392	1.399	1.397	
	Height, in	3.011	2.991	3.01	
io	Water Content, %	27.7	27.9	27.4	
Initial	Dry Density, pcf	96.63	96.79	96.81	
	Saturation, %	98.4	99.6	97.8	
	Void Ratio	0.77	0.767	0.767	
	Water Content, %	31.4	29.8	28.5	
Shear	Dry Density, pcf	91.93	94.18	96.	
	Saturation*, %	100.0	100.0	100.0	
efore	Void Ratio	0.861	0.816	0.782	
m	Back Press., psi	100.1	100.3	100.3	
Ve	r. Eff. Cons. Stress, psi	9.925	19.67	29.7	
Sh	ear Strength, psi	12.67	16.39	24.09	
Str	ain at Failure, %	17.7	18.8	19	
Str	ain Rate, %/min	0.06	0.06	0.06	
B-	Value	0.00	0.00	0.00	
Ме	asured Specific Gravity	2.74	2.74	2.74	
Liq	uid Limit		9440	4427	
Plo	stic Limit			3-4-0	
				7	

Natural
Resources


Natural Resources Conservation Service Project: PLUM CREEK SITE 6 Location: TX

Project No.: 11-1058

Boring No.: F10-1409 Sample Type: CORE

Description: HOLE 300.1

Remarks:

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
O	11-1058	1		SKM	5/20/11	SKM		11-1058-10eng.dat
Δ	11-1058	2		SKM	5/20/11	SKM		11-1058-20eng.dat
□	11-1058	3		SKM	5/20/11	SKM		11-1058-30eng.dat

Natural Resources Conservation Service

Remarks:						
Description: HOLE 300,1						
Boring No.: F10-1409	Sample Type: CORE					
Project: PLUM CREEK SITE 6	Location: TX	Project No.: 11-1058				

TRIAXIAL TEST

Location: TX	Tested By: SKM	Test Date: 5/20/11	Sample Type: CORE
: PLUM CREEK SITE 6	10.: FIU-1409	10.; 11-1058	-i

Project: Boring No Sample No Test No.:

Soil Description: HOLE 300.1 Remarks:

Specimen Height: 3.01 in Specimen Area: 1.52 inv2 Specimen Volume: 75.09 cc

Liquid Limit: ---

Filter Strip Correction: 0.00 psi Membrane Correction: 1.65 lb/in Correction Type: Uniform

Measured Specific Gravity: 2.74

Project No.: 11-1058 Checked By: SKM Depth: Elevation: N/A

Container ID

Piston Area: 0.00 inA2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Plastic Limit: ---Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Dry Soil, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf

Before Test Trimmings

Before Test Specimen+Ring

After Test Trimmings

After Test Specimen+Ring

152.74 116.23 0.116.23 31.41 0.86 100.00 91.93

148.37

116.23

116.23 27.65 0.77 98.38 96.631 148.37

221.87 185.36 69.13 116.23 31.41

End of Shear At Failure

End of Consolidation/B

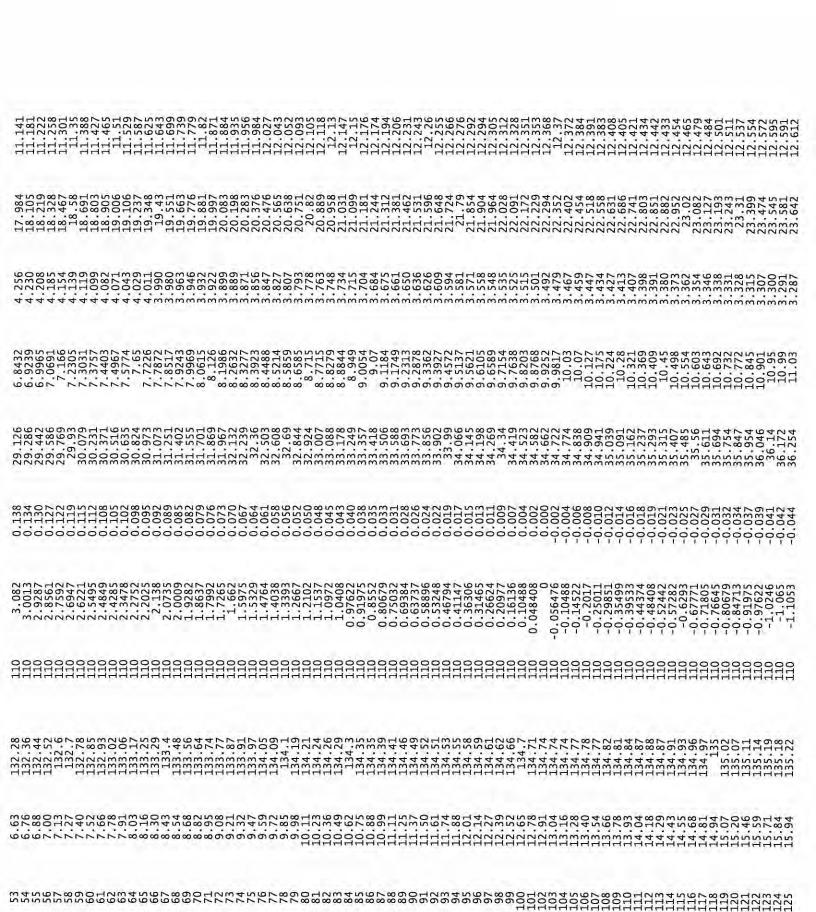
End of Consolidation/A

End of Saturation

End of Initialization

Initial

			4			
	-1058		rrection: 0.00 ps tion: 1.65 lb/in Uniform	0	cal ess psi	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
	No.: 11 By: SKM on: N/A		trip Cor Correct on Type:	Speci	Verti Str	11111111111111111111111111111111111111
	Project Checked Depth: Elevatio		Filter St Membrane Correctio	Measured	Horizontal Stress psi	
					Pore Pressure psi	100 001 100 100 100 100 100 100 100 100
TRIAXIAL TEST	ς 5/20/11 CORE		.00 inv2 n: 0.00 lb 0.00 lb	{	Deviator Stress psi	20.0098 10.009
TRI	cation: TX sted By: St St Date: Mple Type:		ston Area: 0.0 ston Friction ston Weight: 0	astic Limit:	Deviator Load 1b	111.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
	Tee		7.7.7	Р	Corrected Area in AZ	11111111111111111111111111111111111111
ITE 6	SITE	LE 300.1	01 in in/2 .09 cc		Vertical Strain %	0.00 0.00 1.00
	t: PLUM CREEK No.: F10-1409 No.: 11-1058 o.: 1	cription: HO	Height: 3. Area: 1.52 Volume: 75	imit:	Time	2. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
	Project: Boring N Sample N Test No.	Soil Des Remarks:	Specimen Specimen Specimen	Liquid Li		HUW420V880HUW4X878800HUW4X8V88888844444444448


9988.8890 9988.8890 988888889 9887.76 987.76 9887.78 9887.78 9887.78 9887.78 9887.78 9887.78 9887.78 9887.78 9887.78 9887.78

46.043 46.136 46.136 46.383 46.383 46.584 46.983 47.186 47.332 47.332 47.403 47.403 47.403 47.403 47.403 47.403 47.403 47.403

1.7779 7.8835 7.778835 7.778835 7.78835 7.78835 7.78835 7.88020 7.88113 7.8811

16.30 16.325 16.325 16.325 16.325 16.325 17.325 17.325 17.325 17.325 17.325 18.00 18.00 18.00 18.00 18.00 18.00 18.00 18.00 19.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10

					p.rsd	2.88.88.88.88.88.88.88.88.88.88.88.88.88		
			ion: 0.00 psi 1.65 lb/in form	ravity: 2.74	Effective p psi	99.11111111111111111111111111111111111		
Project No.: 11-1058 Checked By: SKM Depth: Elevation: N/A		rip Correcti Correction: n Type: Unif	pecific G	corr recti Type: ecific	ip Corr orrecti Type: pecific	Stress Ratio	1111070708888888444444444444444444444444	
	0		Filter St Membrane Correctio	Measured	Effective Horizontal Stress psi	0.88		
					Effective Vertical Stress psi	9.97 114.99 12.97		
153	0/11 ORE		00 in/2 in: 0.00 lb dl 00.00	.00 in 2 0.00 in dl b	1,00.0 1,00.0		A Parameter	4.7 (1.25) (1.25
TU	ocation: TX ested By: SKM est Date: 5/20 ample Type: C0		ton Area: ton Fricti ton Weight	astic Limit:	Excess Pore Pressure psi	0.10www444444444444444444444444444444444		
	Tes Tes		2.7.2	2.7.2	מ מממ	Total Horizontal Stress psi		
	SITE 6	E 300.1	. in n^2 19 cc		Total Vertical Stress psi	1112 1112 1112 1112 1122 1123 1123 1130 1130		
	LUM CREEK : F10-1409 : 11-1058 1	ription: HOLE	Height: 3.01 Area: 1.52 i Volume: 75.0	mit:	Vertical Strain %	00000001111111111111111111111111111111		
	Project: P Boring No. Sample No. Test No.:	Soil Descr Remarks:	Specimen A Specimen A Specimen V	Liquid Lim		11111111111110000000000000000000000000		

12. 613 12. 625 12. 652 12. 652 12. 654 12. 655 12. 665 13. 665 13. 665 14. 665 15. 665 15. 665 15. 665 15. 665 16. 665 17. 66 23.684 223.772 223.7723 223.8822 24.0072 24.0072 24.0072 24.1151 24.1151 24.306 24.306 24.306 24.306 24.306 24.306 24.306 24.306 24.306 mmmmmmmmmmmmmmmmm 11.071 11.103 11.1152 11.1152 11.1353 11.353 11.353 11.531 11.531 11.668 11.668 11.668 36.396 36.396 36.343 36.343 36.357 36.357 36.386 36.386 36.386 36.386 37 1. 1456 1. 1779 1. 1779 1. 1779 1. 1779 1. 1710 1. 1710 1. 1727 1. 172

16.07 16.07 16.07 16.08 16.09 17.11

TEST	
TRIAXIAL	

Location: T	Tested By:	S	Sample Type:
Project: PLUM CREEK SITE 6	Boring No.: F10-1409	Sample No.: 11-1058	Test No.: 2

TX SKM 5/20/11 E: CORE

Soil Description: HOLE 300.1 Remarks:

Specimen Height: 2.99 in Specimen Area: 1.54 in 2 Specimen Volume: 75.34 cc

Liquid Limit: ---

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: ---

Filter Strip Correction: 0.00 psi Membrane Correction: 1.65 lb/in Correction Type: Uniform

Measured Specific Gravity: 2.74

After Test Specimen+Ring Before Test Specimen+Ring Before Test Trimmings

After Test Trimmings

221.24 186.44 69.63 116.81 29.79

151.61 116.81 0 116.81 29.79 0.82 100.00 94.176

149.4 116.81 27.90 0.77 99.63 96.787 149.4 116.81 0 116.81 27.90

Initial

Degree of Saturation, % Dry Unit Weight, pcf

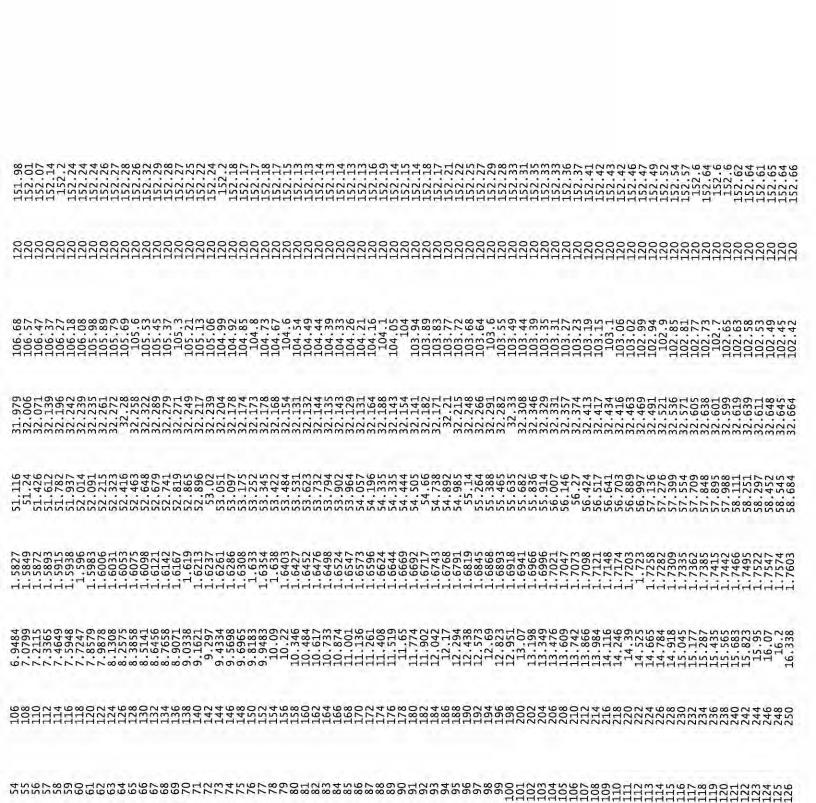
Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Dry Soil, gm Water Content, %

Container ID

End of Initialization

End of Consolidation/A

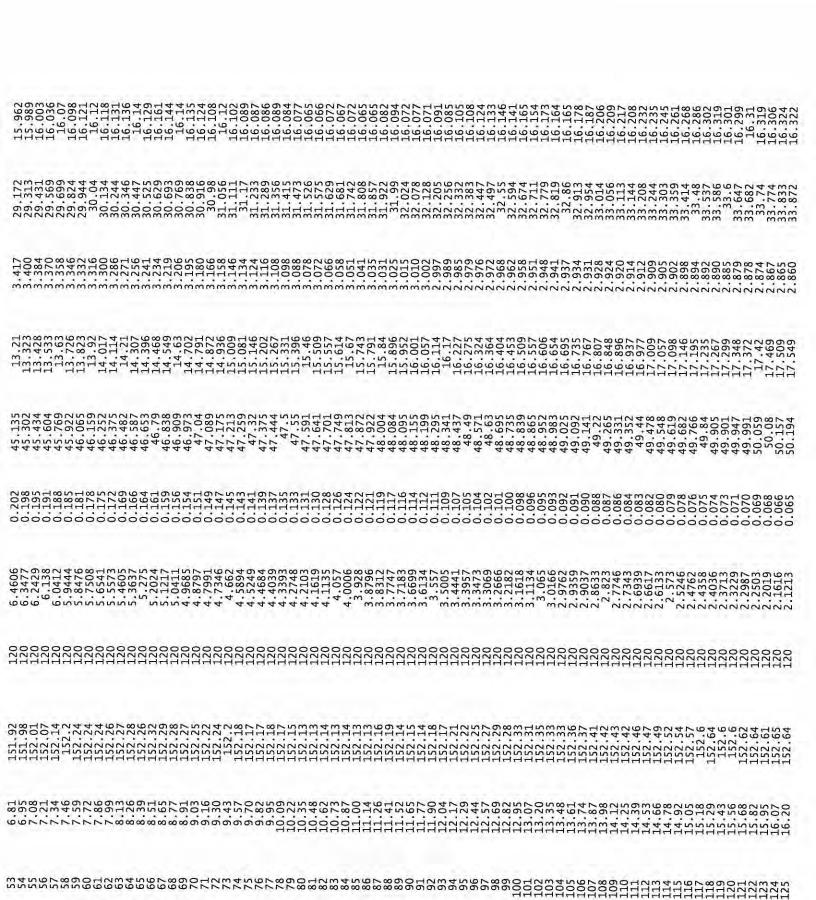
End of Saturation


End of Consolidation/B

End of Shear

At Failure

Project No.: 11-1058 Checked By: SKM Depth: Elevation: N/A


	No.: 11-1058 By: SKM n: N/A		trip Correction: 0.00 psi Correction: 1.65 lb/in on Type: Uniform	Specific Gravity: 2.74	Vertical Stress psi	1221 1221 12321 12321 1338333 133333 133333 133333 133333 133333 133333 133333 133333 133333 133333 133333 133333 133333 133333 1333
Project No Checked By Depth: Elevation	Filter Str Membrane C Correction	Measured	Horizontal Stress psi	200000000000000000000000000000000000000		
					Pressure psi	1000 1000 1000 1000 1000 1000 1000 100
0/11	0/11 O/11 ORE		.00 in/2 0.00 lb 0.00 lb	-	Deviator Stress psi	2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.21 2.22 2.22 2.23
KT	ation: TX ted By: SKN t Date: 5/2 ole Type: C		ston Area: 0.0 ston Friction ston Weight: (ton Area: ton Fricti ton Weight Stic Limit	Deviator Load	7.70690 111.56 111.56 113.56 1
Loca Test Test Samp		2.2.2	P	Corrected Area in^2	1. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	
Project: PLUM CREEK SITE 6 Boring No.: F10-1409 Sample No.: 11-1058 Test No.: 2	ITE	E 300.1) in n^2 14 cc		Vertical Strain %	0.14618 0.55987 0.562299 0.5622999 0.5622999 0.5622999 0.5622999 0.5622999 0.5622999 0.5622999 0.56229999 0.562299999999999999999999999999999999999
	PLUM CREEK .: F10-1409 .: 11-1058	ription: HOL	неіght: 2.99 Агеа: 1.54 і Volume: 75.3	mit:	Time	2.5.000111110.000111110.000111110.000111110.000111111
	Soil Desc Remarks:	Specimen Specimen	pecimen Hei pecimen Are pecimen Vol iquid Limit		11111111111111111111111111111111111111	

- 1			153.671						-					- •				- 1		•			
120	120	120	120	120	170	120	077	077	120	120	120	120	750	120	120	120	770	120	120	0.00	TEO	120	
102.39	102.35	102 31	102 27	102 23	107.701	102 17	107. TO	102.14	102.1	102.07	102.04	101 00	100	101.95	101.92	1001	100	101.85	101.82	701	TOT	101,76	
32.655	32.665	32.628	32,614	37,615	32.574	32 594	700.00	25.03/	32.63	32.661	32.681	32 65	1000	52.035	32.686	37 708	200	32./14	32.762	32 765	26.10	32.788	
58.777	58.885	58.932	59,009	59, 102	59 133	50 272	20.77	754.60	59.551	59.705	59.845	59.891	1000	59.908	60.17	60.309	100	00.41/	60.618	60.727	17.00	60.82	
1,7633	1.7659	1.7689	1.7718	1.7743	1.7777	1 7801	1 7827	17071	1.786	1.7888	1.7916	1.7945	7007	1.19/4	1.8004	1.8032	1 0050	T.0039	1.8091	1.8119	1000	1.8134	
16.481	16,601	16.746	16.879	16.997	17.134	17.267	17 389	100	17.543	17.67	17.801	17.931	18 064	To: 00+	18.202	18.329	12 151	10.431	18.594	18.722	101	18./86	

						2.8.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.			
	- 22		ion: 0.00 psi 1.65 lb/in form	avity: 2.74	fectiv	791790000000000000000000000000000000000			
	: 11-1058 SKM N/A		p Correction rrection: 1. Type: Unifo	cific Gr	Stress	11111112022222222222222222222222222222			
	Project No. Checked By: Depth: Elevation:		Filter Strip Membrane Cori Correction Ty	ds p	Effective Horizontal Stress psi	19.857 16.509 17.856 17.856 17.856 17.856 17.856 17.992 17.992 10.648 10.648 10.648 10.648 10.648 10.648 10.648 10.648 10.648 10.648 10.648 10.648 10.648 11.178			
					Effective Vertical Stress psi	223.202.202.202.202.202.202.202.202.202.			
WTWL IES	ocation: TX rested By: SKM rest Date: 5/20/11 sample Type: CORE		.00 in/2 1: 0.00 lb 0.00 lb	1	A Parameter	0.000000000000000000000000000000000000			
TWI			ston Area: 0.0 ston Friction ston Weight:	ton weight stic Limit	stic	sti	Excess Pore Pressure psi	1.84	
Locs Tesi Samm		7 7 7 7 7 7	Pla	Total Horizontal Stress psi	00000000000000000000000000000000000000				
UM CREEK SITE 6 F10-1409 11-1058	-E 300.1	9 in in/2 34 cc		Total Vertical Stress psi	122 122 122 123 123 123 123 123 123 123				
	ription: HOLE	Height: 2.99 Area: 1.54 Volume: 75.3	ght: 2.99 a: 1.54 i ume: 75.3	ght: 2.99 a: 1.54 ume: 75.3	ght: 2.99 a: 1.54 j ume: 75.3	ght: 2.99 a: 1.54 j ume: 75.3	eight: 2.99 rea: 1.54 i olume: 75.3 it:	a: 1.54 i ame: 75.3 	Vertical Strain
	Project: PL Boring No.: Sample No.: Test No.: 2	Soil Desc Remarks:	Specimen Specimen Specimen	Liquid Li		11444444444444444444444444444444444444			

p psi

333.914 34.503 34.503 34.503 34.503 34.503 34.503 34.503 34.503 34.503 34.503 34.503 34.503 34.503 34.503 2.858 2.25.851 2.851 2.845 2.845 2.828 2.828 2.828 2.828 2.828 2.828 2.828 2.828 2.828 2.828 2.828 2.828 2.838 2.8 17.582 17.614 17.614 17.684 17.767 17.767 17.864 17.864 17.864 17.969 17.969 17.961 18.003 18.003 18.122 18.122 18.122 18.122 18.122 18.122 18.122 18.122 18.122 18.123 18.122 18.123 18 500.246 500.269 500.269 500.281 500.381 500.383 500.383 500.524 500.666 500.66 0.063 0.063 0.065 0.065 0.055 2.089 2.0089 1.1099845 1.1099845 1.2099845 1.2099848 1.20999 1.50999 1 11552.66 12522.66 125222.66 125222.66 125222.66 125222.66 12522.77 16.34 116.88 117.00 117.32 117.98 117.98 117.98 117.98 118.98 118.59 118.59 118.59 118.59 118.59

TRIAXIAL TEST

Project: PLUM CREEK SITE 6	Location: T
Boring No.: F10-1409	Tested By:
Sample No.: 11-1058	Test Date:
Test No.: 3	Sample Type

TX SKM 5/20/11 e: CORE

Project No.: 11-1058 Checked By: SKM Depth: Elevation: N/A

Soil Description: HOLE 300.1 Remarks: Specimen Height: 3.01 in Specimen Area: 1.53 in/2 Specimen Volume: 75.60 cc

Liquid Limit: ---

Container ID

Piston Area: 0.00 in 2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: ---

Filter Strip Correction: 0.00 psi Membrane Correction: 1.65 lb/in Correction Type: Uniform

Measured Specific Gravity: 2.74

Before Test Specimen+Ring Before Test Trimmings

After Test Specimen+Ring

After Test Trimmings

220.41 186.96 69.72 117.24 28.53

117.24 27.39 0.77 97.85 96.807

117.24

Wt. Container + Wet Soil, gm Wt. Container, gm Wt. Container, gm Wt. Dry Soil, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf

111

149.35

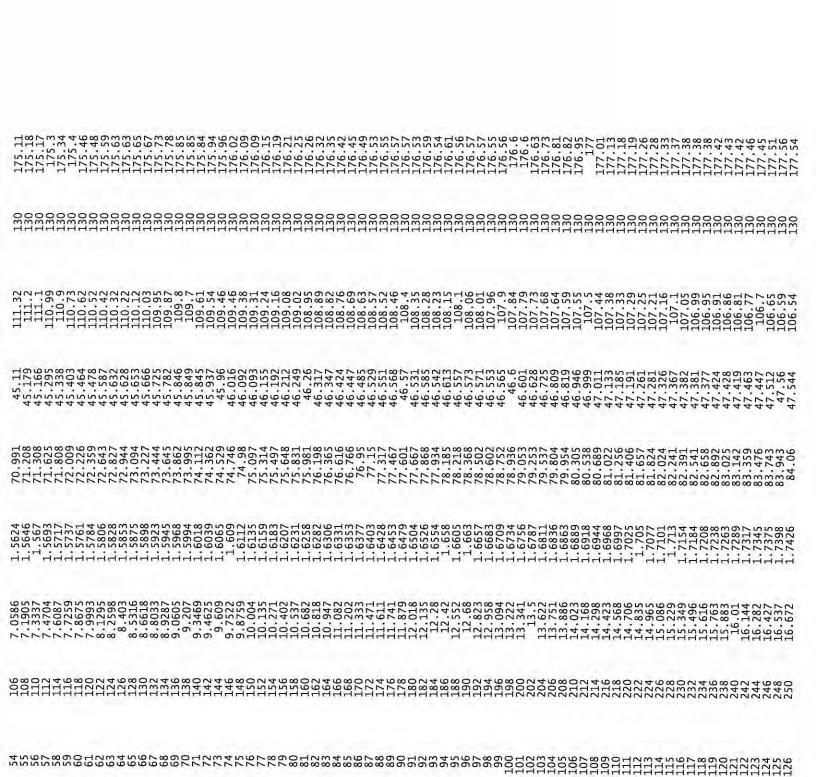
149.35

150.69 117.24 117.24 28.53 28.53 100.00 96.002

Initial

End of Initialization

End of Consolidation/A


End of Saturation

End of Consolidation/B.

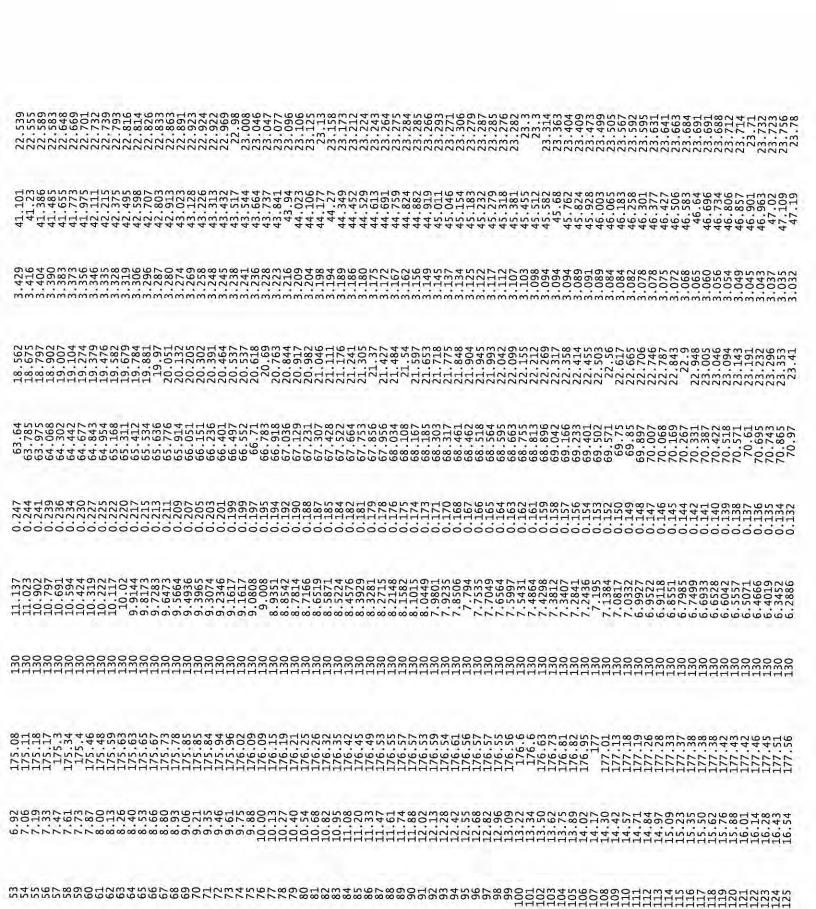
End of Shear

At Failure

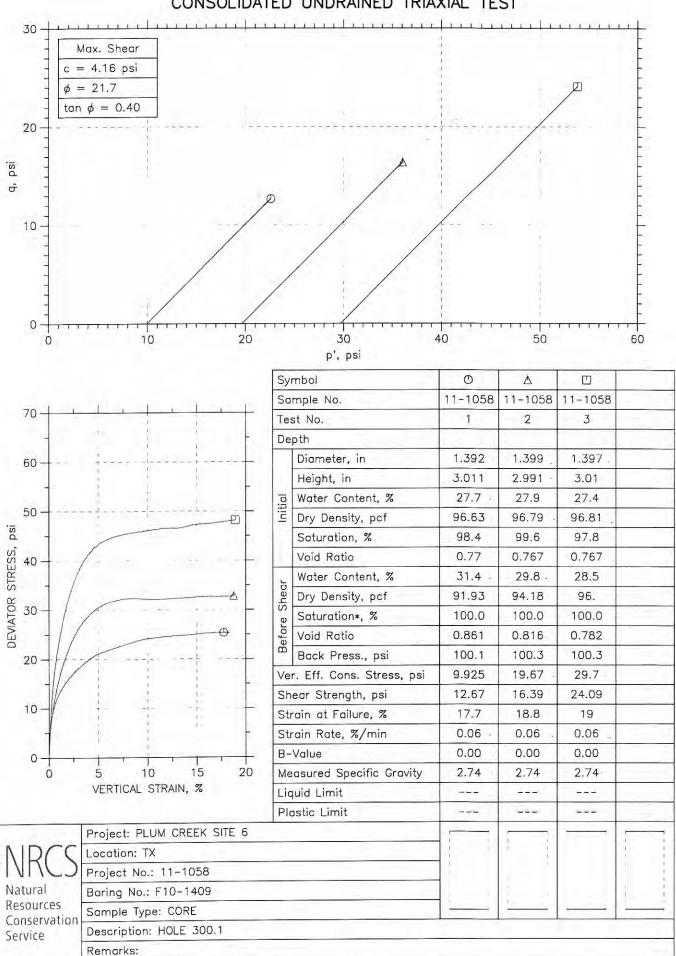
	No.: 11-1058 By: SKM on: N/A		crip Correction: 0.00 psi Correction: 1.65 lb/in on Type: Uniform	Specific Gravity: 2.74	Vertical Stress psi	130 130 130 130 130 130 130 130 130 130				
	Project N Checked B Depth: Elevation	Elevation: N/ Filter Strip Membrane Corr Correction Ty	Measured	Horizontal Stress psi						
					Pore Pressure psi	10100001 101010101010101010101010101010				
0/11 O/11 ORE		.00 inv2 dr 00.00 dr 00.00	00.00 1 0.00 1 0.00 1b	00 in 2 0.00 : 0.00 lb	00.00 : 0.00 1b	00 inv2 0.00 : 0.00 lb	0.00 Jb 16	1	Deviator Stress psi	0.114141922 202028888888888888888888888888888888
	cation: TX ted By: SKM it Date: 5/20 iple Type: COI		ston Area: 0 ston Friction ston Weight:	ton Area: ton Fricti ton Weight Stic Limit	Deviator Load 1b	9.00 1.00				
	Loca Tes Tes		er P	<u>.e.g.g</u>	2.7.2	-	Corrected Area in^2	44444444444444444444444444444444444444		
roject: PLUM CREEK SITE 6 oring No.: F10-1409 ample No.: 11-1058 est No.: 3	E 300.1	l in in/2 50 cc	υ >	Vertical Strain	0.00000 0.00000 1.000000 1.000000 1.0000000 1.0000000000					
	ription: HOL	Height: 3.01 Area: 1.53 i Volume: 75.6	mit:	Time min	88.00033 88.000339 1110.001 1110.00339					
	Soil Desc Remarks:	Specimen Specimen Specimen	Liquid Li		H2w4ravev8e9112L413L1812S1SS2S2S2SSSSSSSSSSSSSSSSSSSSSSSSSS					

177.62 177.62 177.77 177.77 177.77 177.79 177.99 177.99 178.01 178.02 178.13 178.13 178.13 178.13

106.5 106.5 106.5 106.3 106.3 106.3 106.3 106.1 106.1 106.0 107.9 107.9 107.9 107.9 107.9 107.9 107.9 107.9 107.9 107.9 107.9


47.622 47.622 47.622 47.729 47.709 47.709 48.002 48.002 48.129 48.129 48.129

84.361 884.478 884.478 885.078 885.078 886.013 886.013 886.798 87.286 87.496 87.496 87.496 87.496


1,7482 1,7482 1,75882 1,75835 1,75825 1,76625 1,777 1,776 1,777 1,777 1,777 1,777 1,777 1,791 1,

16.936 16.936 17.188 17.188 17.351 17.837 17.837 17.837 17.837 18.282 18.153 18.541 18.673 18.773 18

					p, tsd	3. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.			
			ion: 0.00 psi 1.65 lb/in form	avity: 2.74	Effective p psi	29. 698 332. 7.2698 33. 7.27. 7.0064 33. 3.9. 6.98 3. 7.2. 7.2. 7.2. 7.2. 7.2. 7.2. 7.2. 7			
	o.: 11-1058 y: SKM : N/A		ip Correct orrection: Type: Uni	Specific Gr	Stress Ratio	11111111111111111111111111111111111111			
ject N cked B th: vation vation rection	Measured	Effective Horizontal Stress psi	29. 28. 28. 28. 28. 28. 28. 28. 28. 28. 28						
					Effective Vertical Stress psi	28. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8			
0/11 0/11		00 in/2 1: 0.00 lb 0.00 lb	1	A Parameter	** O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
INT	ion: TX d By: SKW Date: 5/2 e Type: C		ton Area: 0.(ton Friction ton Weight: (stic Limit:	Excess Pore Pressure psi	1.2. 12. 12. 12. 12. 12. 12. 12. 12. 12.			
Locat Teste Test Sampl	s i q	SSS	the share	the the she	-111	the the the	Pla	Total Horizontal Stress psi	
LUM CREEK SITE 6 : F10-1409 : 11-1058 3 iption: HOLE 300.1	300.	in Jaz Jac		Total Vertical Stress psi	136.56 1441.54 1441.554 1474.65 150.95 150.95 150.95 150.95 160.31 160.31 161.36 161.36 162.3 164.05 170.11 170.52 171.25 172.21 173.25 173.25 174.25 174.75 174.59 174.59				
	 0	Height: 3.01 Area: 1.53 i Volume: 75.6	a: 1.53 i	aht: 3.01 a: 1.53 i ame: 75.6	ght: 3.01 a: 1.53 i ame: 75.6	a: 1.53 i	nr 1.53 in/2 1.53 in/2 1.60 o	Vertical Strain %	00000001414141414170707070 www.www.w. 4444444 www.w.w.w.w.w.w.w.w.
	Project: P Boring No. Sample No. Test No.:	Soil Descr Remarks:	Specimen H Specimen A Specimen V	Liquid Limi		17284707889511111111111111111111111111111111111			

47.231 47.304 47.435 47.435 47.435 47.835 47.805 47.805 47.805 47.805 47.805 48.117 48.1185 48.218 mmmmmmmmmmnnnnn 23.45 203.45 203.45 203.65 203 71.003 71.118 71.118 71.1278 71.3578 71.386 71.4664 71.7664 71.997 72.0931 72.0931 72.288 72.288 72.288 72.288 00000000000000000 177.54 177.63 177.63 177.77 177.77 177.77 177.98 177.98 177.98 177.98 177.98 177.98 177.98 177.98 177.98 177.98 177.98 177.98 177.98 178.09 178.13 178.13 178.13 178.13 178.13 16.67 16.82 11.09 11.7.35 11.7.19 11.7.35 11.7.35 11.7.35 11.7.35 11.7.35 11.7.35 11.7.35 11.7.35 11.7.35 11.7.35 11.8

SHEAR TEST DATA

CELL NO.	_D	LOAD CH.	_ 2	E Ex
UU BURETTE NO	4	STRAIN CH.		
qu MACHINE NO	4	P.P. CH	LAB. NO	11-1058
CUBAR			11-10	058-10
VS COMPACTED _			TEST DAT	E 5/20/11
BP UNDISTURBED		Gs_2.74.		
Cell_\\o PSI Base \\o c	PSI Test_	O PSI B 0.98	RATE OF S	TRAIN <u>06</u> in % /min.
SPECIMEN DAT	A		TURE DAT	
TECHNICIAN SKA			CIAN SKY	
	NITIAL IN MACHINI			INITIAL FINAL
TOP IN.	1.392	WET WT. SPEC. + CAN	(GM.)	221.87
MIDDLE IN.	1 - 1	DRY WT. SPEC. + CAN	(GM.)	185.36
BOTTOM IN.		WT. MOISTURE	(GM.)	
MEAN DIAMETER IN.	1.392	WT. CAN	(GM.)	69,13
HEIGHT IN.		WT DRY SOIL	(GM.)	
MOIST WT. GM.	148.37	PERCENT MOISTURE		27.65 31,411
END AREA IN. ²		DRY UNIT WEIGHT	(GM/CC)	1 1 3 3 2 2 2 Y
VOLUME IN. 9	4.582	PERCENT POROSITY		
MOIST UNIT WT. PCF		THEORETICAL SAT. %		
CONSOLIDATION DA	ATA	PERCENT SAT. @ START		
TECHNICIAN Skm	\$	FAILURE SKETCH		and the same of the same of the
EXTENSIOMETER READINGS DAT	E: 5/19/1		116.23	
INITIAL READING O SOUND IN. TIM				
FINAL READING 6.0218 IN. TIM			/	/\
HT, DEFORMATION IN.	L. 10.4			
III. DEI CHIMATION				
INITIAL BURETTE READING 9.00	CM			155°
FINAL BURETTE READING 742	CM			1
VOL. CHANGE 1,58C CC x 0.061	IN. ³			
CONS. VOLUME OF SPECIMEN		C.		
CONS. HEIGHT OF SPECIMEN 2.9	48 IN.			
AVG. AREA OF CONS. SPECIMEN	IN. 2			11
CONSOLIDATED MOIST UNIT WT.	PCF		-8	
			04	
		INITIAL DRY DENSITY FINAL DRY DENSITY	12	71
REMARKS: 1376	2			
1.11	2 3013			
100 4	11			
9.8	10			
[+ 0				
9		bv: SKM	De	te: 5/24/11
	- Onooned			

SHEAR TEST DATA

CELL NO. —	<u></u>	LOAD CH		of_	3
UU BURETTE NO	5	STRAIN CH.		11 15	100
qu MACHINE NO	5	P.P. CH	LAB. NO		258
CUBAR				058-20	
VS COMPACTED _		0 711	TEST DAT	E 5120	. 11
BP UNDISTURBED		Gs_2.74.		,	
		1 < 2			Λη.
Cell 120 PSI Base 100					in.l% /min.
SPECIMEN DATA	A	MOIST	URE DAT	'A	
TECHNICIAN SEM		TECHNI	CIAN SKA	1	
	IITIAL IN MACHIN	E		INITIAL	FINAL
TOP IN.	1.399	WET WT. SPEC. + CAN	(GM.)		221.24
MIDDLE IN.	1,400	DRY WT. SPEC. + CAN	(GM.)		18644
BOTTOM IN.	1397	WT. MOISTURE	(GM.)		
MEAN DIAMETER IN.	1.399	WT. CAN	(GM.)	E de la company	69.63
HEIGHT IN.	2991	WT DRY SOIL	(GM.)		
MOIST WT. GM.	149.40	PERCENT MOISTURE		27,90	29.79
END AREA IN.®	1.537	DRY UNIT WEIGHT	(GM/CC)		
VOLUME IN.5	4598	PERCENT POROSITY			
MOIST UNIT WT. PCF	12379	THEORETICAL SAT, %			
CONSOLIDATION DA	TA	PERCENT SAT. @ START			
TECHNICIAN SILM	`	FAILURE SKETCH	116.81		
	E: Sliglii		110,01		
INITIAL READING & TOURS IN. TIM					
FINAL READING 5,0457 IN. TIM				/	
HT, DEFORMATION IN.	. 10.4	-	/	55	
THE DEFORMATION IN.		1	/	/5	
INITIAL BURETTE READING 9,20	CM	1		1	
FINAL BURETTE READING 609	CM		60		
21,	11.8			7	
VOL. CHANGE 3.160 CC x 0.061	IN. ³	-			
CONS. VOLUME OF SPECIMEN 446					
CONS. HEIGHT OF SPECIMEN 2,8					
AVG. AREA OF CONS. SPECIMEN	IN. 2				
CONSOLIDATED MOIST UNIT WT.	PCF		-		
			91.7	8	
		INITIAL DRY DENSITY	= 101	0	1
		FINAL DRY DENSITY	=	0	
REMARKS: 1399	29	75			
1005		12			
1399	3	12			
140	Ĩ				
1395	9				
90	7	2		-	0.4 . 1
	Checked	d by:Skm	Da	ate: _5_/	26 11

SHEAR TEST DATA

CELL NO.	F	LOAD CH.		205	3- 1
UU BURETTE NO	6	STRAIN CH.		- 11 1	
qu MACHINE NO	4	P.P. CH	LAB. NO	o. <u>11-10</u>	258
CUBAR			11-	1058-30	
VS COMPACTED			TEST DAT	TE 5/20	(1)
BP UNDISTURBED	L	Gs 2.74			
		2			
Cell \30 PSI Base \	PSI Test_	30 PSI B 0.98	RATE OF S	STRAIN 06	in 1%/min.
SPECIMEN DA	TA	MOIST	URE DAT	CA.	
TECHNICIAN Str		TECHNI	CIAN S	h	
DIAMETER	INITIAL IN MACHIN			INITIAL	FINAL
TOP IN.	1,398	WET WT. SPEC. + CAN	(GM.)		22041
MIDDLE IN.		DRY WT. SPEC. + CAN	(GM.)		186,96
BOTTOM IN.	1395	WT. MOISTURE	(GM.)		
MEAN DIAMETER IN.	1.397	WT. CAN	(GM.)		69.72
HEIGHT IN.	3,010	WT DRY SOIL	(GM.)		
MOIST WT. GM.		PERCENT MOISTURE		27,39	28.53
END AREA IN. ²		DRY UNIT WEIGHT	(GM/CC)		T- 17-2
VOLUME IN.5	4.014	PERCENT POROSITY	1,1,1,1,1,1,1		
MOIST UNIT WT. PCF	12332	THEORETICAL SAT, %			
CONSOLIDATION		PERCENT SAT. @ START			
TECHNICIAN SKM	4	FAILURE SKETCH			
	DATE: Slig(1)	FAILORE SKETCH	11 11 24		
INITIAL READING O. GOOD IN. 7			_		
FINAL READING 0.0585 IN. T					
	IVIE. 126		11/	1	
HT. DEFORMATION IN.				1	
INITIAL BURETTE READING 94	to CM			600	
FINAL BURETTE READING 5.4			6	50/1	1
				1	
VOL. CHANGE 3,980 CC x 0.061	IN.3			1	
	37/ IN. ³				1
	852 IN.				
AVG. AREA OF CONS. SPECIMEN	IN. Ž				
CONSOLIDATED MOIST UNIT WT.	PCF				
			- 96.	20	
		INITIAL DRY DENSITY	1.55	100	-4
		FINAL DRY DENSITY	=	10	
REMARKS:	96 3011				
1200	11				
101.4	02 10				
19.6	94	N.			
13	97				Ť
	94	010-	in.		2/ //
	Checked	lby:SKM	Da	ate: <u>5</u> /	04.4

Shear Test Data Specimen #1

Project: PLUM CREEK SITE 6

State: TX

Lab No: 11-1058 Test Specifications: Specific Gravity (Gs): 2.74

Shear Cell No.: 4
Confining Pressure: 10 psi

Top Diameter: 1.392 inches

Middle Diameter: 1.392 inches (Either measure two middle diameters

Middle Diameter: 1.392 inches or enter in the same value)
Bottom Diameter: 1.392 inches

Height of Specimen:

Moist Weight of Specimen:

Mean Diameter:

End Area:

3.011 inches

148.37 gms.

1.392 inches

1.522 sq. inches

Volume of Specimen: 1.522 sq. inches 4.582 cubic inches

Moist Unit Weight: 123.35 pcf (multiply gms/cubic inch by 3.8095 to

to achieve pcf)

Extensiometer Height Deformation: inches Initial Volume of Base Cell: 9.00 ml. Final Volume of Base Cell: 7.42 ml.

Is the Large Burette being Used? no (yes or no)

Calibrated Area of the Base Burette: 0.19610 cc

Burette Volume: 1.580 cc note 1.00 ml = 1.00 cc

Burette Volume: 0.096 cubic inches
Consolidated Volume: 4.486 cubic inches

Assumed Consolidated Height: 0.063 inches
Assumed Height after Consolidation: 2.948 inches

Moist Weight of Specimen + Can:

Dry Weight of Specimen + Can:

Weight of Can:

Weight of Water:

Weight of Dry Specimen:

221.87 gms.

185.36 gms.

69.13 gms.

49.13 gms.

116.23 gms.

Initial Water Content: 27.65 percent Initial Dry Density: 96.63 pcf Percent Saturated: 98.36 percent

Initial Void Ratio: 0.770

Initial Diameter: 1.392 inches Initial Height: 3.011 inches

Final Water Content: 31.41 percent
Final Dry Density: 98.71 pcf
Percent Saturated: 117.42 percent

Final Void Ratio: 0.733

Final Diameter*: 1.392 inches
Final Height: 2.948 inches

*Diameter is estimated to be unchanged

Checked by: SKM

Shear Test Data Specimen #2

Project: State:	PLUM CREEK SITE 6	
Lab No:	11-1058	Test Specifications:
Specfic Gravity (Gs):	2.74	rest opecifications.
Specific Gravity (GS).	2.14	
Shear Cell No.:	5	
Confining Pressure:	20 psi	
9	7.50	
Top Diameter:	1.399 inches	
Middle Diameter:	1.400 inches	(Either measure two middle diameters
Middle Diameter:	1.400 inches	or enter in the same value)
Bottom Diameter:	1.397 inches	
Height of Specimen:	2.991 inches	
Moist Weight of Specimen:	149.40 gms.	
Mean Diameter:	1.399 inches	
End Area:	1.537 sq. inches	
Volume of Specimen:	4.598 cubic inches	
Moist Unit Weight:	123.79 pcf	(multiply gms/cubic inch by 3.8095 to
Tholet Cim II Signi.	,255 ps.	to achieve pcf)
Extensiometer Height Deformation:	inches	to domovo poly
Initial Volume of Base Cell:	9.20 ml	
Final Volume of Base Cell:	6.04 ml.	
Is the Large Burette being Used?	no (yes or no)	
Calibrated Area of the Base Burette:	0.19610 cc	
Calibrated Area of the base burette.	0.19010 CC	
Burette Volume:	3.160 cc	note 1.00 ml = 1.00 cc
Burette Volume:	0.193 cubic inches	
Consolidated Volume:	4.405 cubic inches	
Assumed Consolidated Height:	0.125 inches	
Assumed Height after Consolidation :	2.866 inches	
Moist Weight of Specimen + Can:	221.24 gms.	
Dry Weight of Specimen + Can:	186.44 gms.	
Weight of Can:	69.63 gms.	
Weight of Water:	34.80 gms.	
Weight of Dry Specimen:	116.81 gms.	
Initial Water Content:	27.90 percent	
Initial Dry Density:	96.78 pcf	
Percent Saturated:	99.61 percent	
Initial Void Ratio:	0.767	
Initial Diameter:	1,399 inches	
Initial Height:	2.991 inches	
Final Water Contents	20.70 paraent	
Final Water Content;	29.79 percent	
Final Dry Density:	101.02 pcf 117.74 percent	
Percent Saturated:	0.693	
Final Void Ratio:		
Final Diameter*:	1.399 inches	
Final Height: *Diameter is estimated to be unchanged	2.866 inches	
Checked b	y: SKM	
Oliecked D	J. 0140	

Shear Test Data Specimen #3

PLUM CREEK SITE 6 Project: State: TX Lab No: 11-1058 **Test Specifications:** 2.74 Specfic Gravity (Gs): Shear Cell No .: 6 Confining Pressure: 30 psi Top Diameter: 1.398 inches Middle Diameter: 1.398 inches ... (Either measure two middle diameters Middle Diameter: 1.398 inches or enter in the same value) Bottom Diameter: 1.395 inches Height of Specimen: 3.010 inches Moist Weight of Specimen: 149.35 gms. -Mean Diameter: 1.397 inches End Area: 1.533 sq. inches Volume of Specimen: 4.614 cubic inches Moist Unit Weight: 123.32 pcf (multiply gms/cubic inch by 3.8095 to to achieve pcf) Extensiometer Height Deformation: inches Initial Volume of Base Cell: 9.40 ml. Final Volume of Base Cell: 5.42 ml. Is the Large Burette being Used? no (yes or no) Calibrated Area of the Base Burette: 0.19570 cc Burette Volume: 3.980 cc note 1.00 ml = 1.00 cc Burette Volume: 0.243 cubic inches Consolidated Volume: 4.371 cubic inches Assumed Consolidated Height: 0.158 inches Assumed Height after Consolidation: 2.852 inches Moist Weight of Specimen + Can: 220.41 gms. Dry Weight of Specimen + Can: 186.96 gms. Weight of Can: 69.72 gms. Weight of Water: 33.45 gms. Weight of Dry Specimen: 117.24 gms.

Initial Water Content: 27.39 percent Initial Dry Density: 96.80 pcf Percent Saturated: 97.83 percent Initial Void Ratio: 0.767 Initial Diameter: 1.397 inches Initial Height: 3.010 inches Final Water Content: 28.53 percent . Final Dry Density: 102.18 pcf Percent Saturated: 115.98 percent Final Void Ratio: 0.674 Final Diameter*: 1.397 inches

*Diameter is estimated to be unchanged

Final Height:

Checked by: SKM

2.852 inches

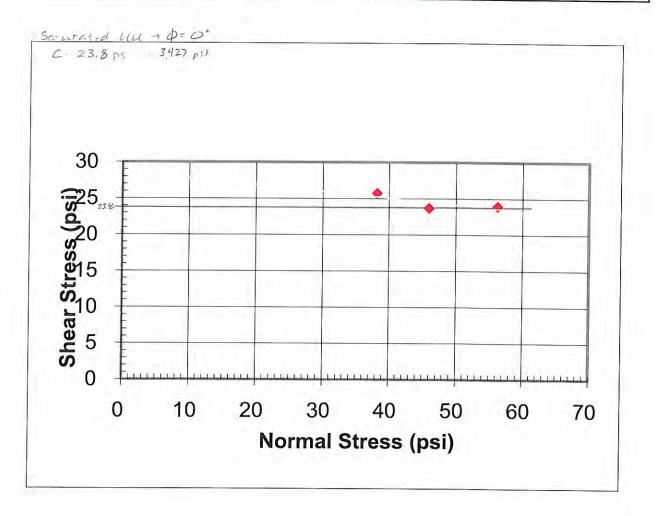
Phototaker 2

-95						LABORATORY N	10
			. DEPARTMENT of AGL L RESOURCES CONSE		UNDISTURBED SAMPLE CHARACTERISTICS		
PROJECT and STATE			L. TV				
	N C	160	K 6 TX	1			
NDCSMC-LIN		COLN, NE	APPROVED BY		5-5-11		
FIELD SAMPLE NO.	FIELD SAMPLE DEPTH (FT.)		SAMPLE LOCATION			TYPE OF LABORATORY	
10-1409			300.			5"Shelh	NO.
COLOR	RELA MOIS		CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER (T.S.F.)	VISUAL CLASSIFICATION (USCS)
& Brown	M	st	VSFIFF	1-3"Rock	SMOOTH	4.5	CL
				race bypsun			
Toc / I I	-						
28.6 % Ye	/153 g/cc				DESCRIBED BY	cm, RM	
-	083 21/2 2083 Unitwolf 3083	51/2" H20	cuttube cuttube cuttube cuttube servered	Chie Trace Unitu	rwise appropriate the sof suppose the supp	Preary J M CORe um through taken.	rout sample
FIELD SAMPLE DEPTH (FT.) NO. FROM TO			SAMPLE LOCATION			TYPE OF SAMPLE	LABORATORY NO.
710-1410	- 01		302.1			3'Shelt	
COLOR		ATIVE	CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER (T.S.F.)	VISUAL CLASSIFICATION (USCS)
X Brown	111	5+	V Stiff	-	SMOOTH	3,75	C (
					(12.2.2.2.2.3.3.4)		
10.0							
w 22.9 % Ya	1.62 g/cc				DESCRIBED BY	KM RM	
	3	1)	REMARKS				Cu
I.			1	(man)	IDIN: Con	100	
不	Laose		1 -24	Ma + 2 5	unifor ial peighti	MOR	e-cl
Not cark	Disca	rded	Plastic	1000121	2010/14	11 21	12
not card	unitwt	H20	- France	anit	negni	1720+	aken
U.							
30	812	047		T.			
55	82		21				
		20fZ					
1 100	1.1	1					

71/2

Mohr Circle Program

SITE NAME: Plum Creek Site 6


STATE: TX

SAMPLE NO: 11-1058 UU

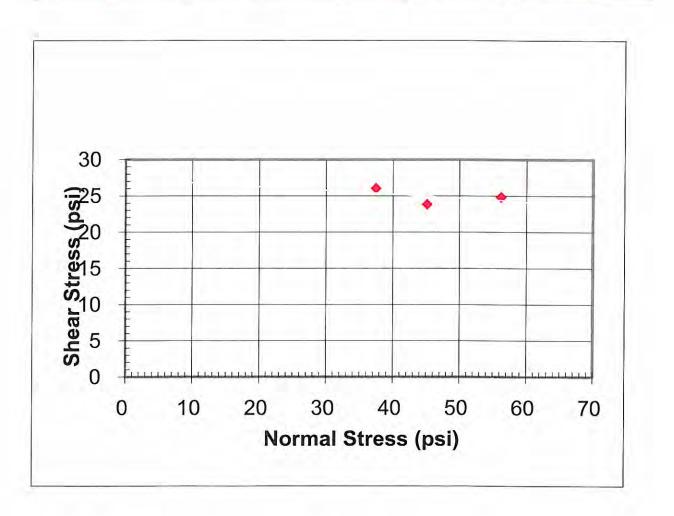
F10-1409 Total Strength Parameters: Zero Cohesion: PHI: -5.3 degrees -5.3 degrees Slope y= Failure Criterion: 1141 psf C: 28.76 psi Effective Strength Parameters: Maximum Dev. Stress PHI': -5.3 degrees Maximum Stress Ratio -5.3 degrees Slope y= 4141 psf 28.76 psi Max. Pore Pressure Stress path analysis for Effective: Recurd. <= 10 % Strain D=0° Alpha': -5.3 degrees Selected Points C = 3,425 psf 28.63 psi a':

(All inputed values in the chart are in psi)

CELL PRESSURE	DEVIATOR STRESS	PORE PRESSURE	PERCENT STRAIN	
OLLET TILLOGOTILE	AT FAILURE	AT FAILURE	(Optional Entry)	
40			(Optional Lifey)	
10	51.6	0.001	10.0	
20	47.5	0.001	10.0	
30	48.0	0.001	10.0	

Mohr Circle Program

SITE NAME: Plum Creek Site 6


STATE: TX

SAMPLE NO: 11-1058 UU

F10-1409 Total Strength Parameters: Zero Cohesion: PHI: -3.0 degrees -3.0 degrees Slope y= Failure Criterion: C: 3937 psf 27.34 psi Effective Strength Parameters: Maximum Dev. Stress PHI': -3.0 degrees -3.0 degrees Slope y= Maximum Stress Ratio 3937 psf 27.34 psi Max. Pore Pressure Stress path analysis for Effective: ✓ <= 10 % Strain
</p> Alpha': -3.0 degrees Selected Points a': 27.30 psi

(All inputed values in the chart are in psi)

CELL PRESSURE	DEVIATOR STRESS	PORE PRESSURE	PERCENT STRAIN	
	AT FAILURE	AT FAILURE	(Optional Entry)	
10	52.1	0.001	10.0	
20	47.7	0.001	10.0	
30	49.7	0.001	10.0	

UNCONSOLIDATED UNDRAINED TRIAXIAL TEST 60 Max. Shear c = 26.1 psi $\phi = 0.0$ $tan \phi = 0.00$ 40 psi ô 20 20 40 60 80 100 120 p, psi Symbol 0 Δ m Sample No. 11-1058 11-1058 11-1058 70 Test No. 2 3 Depth Tested by SKM SKM SKM 60 Test Date 5/25/11 5/25/11 5/25/11 Checked by SKM SKM SKM 50 Check Date psi Diameter, in 1.397 1.398 1.398 DEVIATOR STRESS, Height, in 3.009 3.009 40 2.993 Water Content, % 27.1 26.9 26.3 Dry Density, pcf 97.43 97.47 98.54 30 Saturation, % 98.1 97.8 98.0 Void Ratio 0.756 0.755 0.736 Confining Stress, psi 10 20 30 20 Undrained Strength, psi 26.6 25.23 26.49 Max. Dev. Stress, psi 53.2 50.46 52.98 10 Strain at Failure, % 14 17.8 18 Strain Rate, %/min 1 1 1 Measured Specific Gravity 2.74 2.74 2.74 0 0 10 20 Liquid Limit ---------VERTICAL STRAIN, % Plastic Limit Plasticity Index Project: PLUM CREEK SITE 6 Location: TX Project No.: 11-1058 Natural Boring No.: F10-1409 Resources Sample Type: CORE

ゆうひゃ

Phase calculations based on start and end of test.

Description: HOLE 300.1

Conservation

Service

TRIAXIAL TEST

Project: PLUM CREEK SITE 6 Boring No.: F10-1409 Sample No.: 11-1058 Test No.: 1

Soil Description: HOLE 300.1

Remarks:

Specimen Height: 3.01 in Specimen Area: 1.53 in^2 Specimen Volume: 75.58 cc

Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm Wt. Container, gm Wt. Dry Soil, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf

Liquid Limit: ---

Container ID

Location: TX Tested By: SKM
Test Date: 5/25/11
Sample Type: CORE Project No.: 11-1058 Checked By: SKM Depth:

Elevation: N/A

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: ---

Filter Strip Correction: 0.00 psi Membrane Correction: 1.65 lb/in Correction Type: Uniform

Measured Specific Gravity: 2.74

Before Test	Before Test	After Test	After
Trimmings	Specimen+Ring	Specimen+Ring	Trim
149.87	149.87	149.78	2.
117.96	117.96	117.96	1
117.96 27.05	117.96 27.05 0.76 98.10 97.433	117.96 26.98 0.74 100.00 98.356	

Initial

End of Initialization

End of Consolidation/A

End of Saturation

End of Consolidation/B

End of Shear

At Failure

Project: PLUM CREEK SITE 6 Boring No.: F10-1409 Sample No.: 11-1058 Test No.: 1

Location: TX Tested By: SKM Test Date: 5/25/11 Sample Type: CORE Project No.: 11-1058 Checked By: SKM Depth: Elevation: N/A

Soil Description: HOLE 300.1 Remarks:

Specimen Height: 3.01 in Specimen Area: 1.53 in^2 Specimen Volume: 75.58 cc

Liquid Limit: ---

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb Filter Strip Correction: 0.00 psi Membrane Correction: 1.65 lb/in Correction Type: Uniform

Plastic Limit: ---

Measured Specific Gravity: 2.74

iquiu c	imit		PI	astic Limit.			Measured	Specific Gravit	y: 2.
	Time min	Vertical Strain %	Corrected Area in^2	Load 1b	Deviator Stress psi	Vertical Stress psi	p psi	q psi	
12345678901234567890123456789012334567890123445678901234567890123345678901200000000000000000000000000000000000	5.1707 5.3373 5.5041 5.6706 5.8373 6.0041	5.352 5.5291 5.6223 5.8678 6.0248 6.2127 6.362 6.7285 6.8963 7.0688 7.2381 7.3998 7.5892 7.7616 7.9187 8.0911 8.4529 8.6146	1.5432 1.5432 1.5438 1.5486 1.5514 1.5566 1.5592 1.5623 1.5675 1.5706 1.5735 1.5779 1.5815 1.5843 1.5843 1.5872 1.5904 1.5938 1.599 1.602 1.602	60.261 61.965 63.497 64.967 66.421 67.86 69.048 70.205 71.378 72.441 73.536	38.108 39.11 40.008 40.857 41.691 42.503 43.164 43.816 44.451 45.024 45.619	61.534	29.054 29.555 30.004 30.429 30.846 31.252 31.582 31.908 32.226 32.512 32.81	12.376 13.381 14.278 15.133 15.935 16.698 17.346 17.953 18.563 19.054 19.555 20.004 20.429 20.846 21.252 21.582 21.908 22.226 22.512 22.81	
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74	9.8372 10.004 10.17 10.337 10.504 10.67 10.837 11.004 11.17 11.337 11.504 11.67 11.837 12.004 12.17	10.191 10.371 10.532 10.721 10.901 11.064 11.247 11.409 11.579 11.763 11.934 12.122 12.296 12.456 12.63	1.7067 1.7102 1.7132 1.7169 1.7203 1.7235 1.727 1.7302 1.7335 1.7371 1.7402 1.7442 1.7477 1.7509 1.7544 1.758	90.172 90.423 90.751 90.985 91.361 91.627 91.924 92.189 92.377 92.643 92.956 93.206 93.3 93.487 93.737 94.003	52.401 52.435 52.543 52.543 52.648 52.699 52.755 52.805 52.806 52.84 52.911 52.933 52.875 52.879 52.909 52.945	62.401 62.435 62.526 62.543 62.648 62.699 62.755 62.805 62.806 62.811 62.911 62.875 62.879 62.879	36.201 36.217 36.263 36.272 36.324 36.349 36.403 36.403 36.42 36.455 36.455 36.438 36.444 36.455 36.473	26.201 26.217 26.263 26.272 26.324 26.349 26.403 26.403 26.403 26.42 26.455 26.438 26.438 26.44 26.455 26.473	

77 78 79 80 81 82 83 84 85 1 86 87 1 888 1 990 1 991 1 992 933 1 994 1 995 96 97 1 98 99 1 100 1 101 100 1 100 1 100 1 100 1 100 1 100 1
12.504 12.67 12.837 3.004 13.17 3.337 3.504 13.67 3.837 4.004 14.17 4.337 4.504 14.67 4.837 5.504 15.17 5.337 5.504 15.67 6.337 6.337 6.504 16.17 6.337 6.504 17.17 7.337
12.987 13.144 13.325 13.492 13.666 13.828 14.005 14.187 14.347 14.526 14.703 14.892 15.041 15.209 15.389 15.571 15.737 15.92 16.088 16.25 16.438 16.599 16.777 16.964 17.14 17.32 17.471 17.653 17.837 18.008
1.7616 1.7648 1.7684 1.7719 1.7754 1.7788 1.7824 1.7862 1.7895 1.7933 1.797 1.8042 1.8042 1.8077 1.8116 1.8155 1.8155 1.823 1.8267 1.8302 1.8379 1.8418 1.8459 1.8459 1.8573 1.8654 1.8656 1.8694
94.347 94.55 94.785 95.113 95.348 95.551 95.833 96.083 96.27 96.286 96.286 96.521 96.646 96.677 96.911 96.99 97.083 97.193 97.381 97.537 97.646 97.818 98.069 98.178 98.35 98.538 98.772
53.025 53.038 53.053 53.129 53.147 53.155 53.094 53.059 52.981 52.864 52.784 52.784 52.649 52.57 52.649 52.51 52.439 52.439 52.439 52.325 52.325 52.325 52.325 52.273 52.251 52.253 52.253 52.253
63.025 63.038 63.053 63.129 63.147 63.155 63.094 63.059 62.981 62.864 62.864 62.864 62.734 62.6649 62.57 62.649 62.51 62.439 62.439 62.439 62.325 62.325 62.325 62.325 62.273 62.251 62.253 62.253 62.253 62.253
36.512 36.519 36.526 36.564 36.577 36.598 36.547 36.549 36.497 36.493 36.392 36.367 36.315 36.325 36.285 36.285 36.255 36.255 36.255 36.255 36.272 36.179 36.163 36.179 36.141 36.136 36.126 36.126 36.126
26.512 26.519 26.526 26.564 26.573 26.577 26.598 26.547 26.529 26.497 26.43 26.392 26.43 26.3315 26.325 26.255 26.255 26.255 26.255 26.255 26.26.27 26.179 26.163 26.179 26.141 26.136 26.126 26.126 26.126 26.126

TRIAXIAL TEST

Project: PLUM CREEK SITE 6 Boring No.: F10-1409 Sample No.: 11-1058 Test No.: 2

Soil Description: HOLE 300.1

Remarks:

Specimen Height: 3.01 in Specimen Area: 1.53 in^2 Specimen Volume: 75.69 cc

Liquid Limit: ---

Location: TX Tested By: SKM
Test Date: 5/25/11
Sample Type: CORE Project No.: 11-1058 Checked By: SKM Depth: Elevation: N/A

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: ---

Filter Strip Correction: 0.00 psi Membrane Correction: 1.65 lb/in Correction Type: Uniform

Measured Specific Gravity: 2.74

	Before Test Trimmings	Before Test Specimen+Ring	After Test Specimen+Ring	After Trim
Container ID		444		
<pre>wt. Container + Wet Soil, gm wt. Container + Dry Soil, gm wt. Container, gm</pre>	150 118.17	150 118.17	149.92 118.17	2.
wt. Dry Soil, gm Water Content, % Void Ratio Degree of Saturation, %	118.17 26.94	118.17 26.94 0.75	118.17 26.87 0.74	1
Dry Unit Weight, pcf	222	97.76 97.467	100.00 98.522	

Initial

End of Initialization

End of Consolidation/A

End of Saturation

End of Consolidation/B

End of Shear

At Failure

Project: PLUM CREEK SITE 6 Boring No.: F10-1409 Sample No.: 11-1058 Test No.: 2

Soil Description: HOLE 300.1 Remarks:

Specimen Height: 3.01 in Specimen Area: 1.53 in^2 Specimen Volume: 75.69 cc

Liquid Limit: ---

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: ---

Location: TX Tested By: SKM Test Date: 5/25/11 Sample Type: CORE

Project No.: 11-1058 Checked By: SKM Depth: Elevation: N/A

Filter Strip Correction: 0.00 psi Membrane Correction: 1.65 lb/in Correction Type: Uniform

Measured Specific Gravity: 2.74

iquia Limit		P	lastic Limit.			measured	Specific Gr	avity: 2.
Time min	Vertical Strain %	Corrected Area in^2	Deviator Load lb	Deviator Stress psi	Vertical Stress psi	p psi	q psi	
1	Vertical Strain % 0 0.18322 0.36183 0.52504 0.70826 0.87455 1.0408 1.2241 1.3765 1.5613 1.7352 1.9108 2.2403 2.42403 2.42403 2.42403 2.42403 2.42403 2.42403 2.42403 2.42403 2.42403 2.42403 2.42403 2.42403 2.42403 2.42403 2.42403 2.42403 2.42403 2.4250 6.51811 5.3474 1.5056 5.1811 5.3474 5.5121 5.6753 5.8678 6.0372 6.2004 6.3682 6.556 6.7377 6.8902 7.2412 7.4244 7.5924 7.4244 7.	1.5378 1.5406 1.5406 1.5406 1.5459 1.5485 1.5541 1.5554 1.5554 1.5569 1.5649 1.5762 1.5762 1.5789 1.5846 1.5875 1.5986 1.6042 1.6042 1.6042 1.6072 1.6189 1.6125 1.6125 1.6125 1.6336 1.6336 1.6336 1.6336 1.6336 1.6341 1.6427 1.6486 1.6548 1.6548 1.6548 1.6548 1.6548 1.6645 1.6676 1.6741 1.677 1.6803 1.6838 1.6868 1.6901 1.677 1.6803 1.6838 1.6868 1.6901 1.7096 1.7136 1.7232 1.7265 1.7335 1.7368 1.7467 1.7539 1.7504 1.7539 1.7504 1.7539 1.7507	7.7241 7.9587 15.042 20.249 25.033 29.036 32.82.8 36.4 39.731 45.391 47.877 50.098 52.115 54.022 55.726 57.353 60.23 61.418 62.747 63.669 65.655 66.578 67.516 69.205 69.955 70.784 71.409 72.066 72.785 73.442 74.521 74.896 75.365 75.360 77.601 78.039 78.433 79.493 79.493 79.493 80.541 80.541 80.541 80.541 80.541 80.541 81.385 82.515 82.746 82.515 82.746 83.902 84.074 83.902 84.074 84.168 84.278 84.168 84.278 84.168 84.278 84.278 84.278 84.278 84.371	5.0142 5.1491 9.7232 13.065 18.671 21.062 23.323 25.407 27.166 28.918 30.443 31.803 33.014 34.154 35.166 36.126 37.79 38.47 39.223 40.805 41.307 41.806 42.702 43.068 43.493 44.777 45.263 47.476 47.5263 47.5276 47.5263 47.5263 47.5263 47.5263 47.5263 47.5263 47.5276 47.5263 47.5263 47.5276 47.5276 47.5276 47.7364 47.7364 47.7364 47.7364 47.7364 47.7364 47.7364 47.7364 47.7364 47.7376 47.7384 47.7486 47.7384 47.7384 47.7486 47.7384 47.7486 47.7384 47.7486 47.7384 47.7486 47.7384 47.7486 47.7384 47.7486 47.7384 47.7486 47.7384 47.7486 47.7384 47.7486 47.7384 47.7486 47.7384 47.7486 47.748	25.014 25.149 29.73 33.065 38.671 41.062 43.323 45.407 47.166 48.918 50.443 51.803 53.014 54.154 55.166 56.126 57.028 57.79 58.47 59.223 59.724 60.805 61.307 61.805 62.293 63.068 63.493 63.493 64.115 64.474 65.263 65.263 65.263 67.702 67.362 67.362 67.362 67.362 67.362 67.715 67.752 67.752 67.752 67.753 67.752 67.752 67.753 67.752 67.752 67.753 67.752 67.753 67.752 67.753 67.752 67.753 67.752 67.753 67.752 67.753 67.752 67.753 67.752 67.753 67.752 67.753 67.752 67.753 67.752 67.753 67.752 67.753 67.752 67.753 67.752 67.753 67.752 67.753 67.753 67.753 67.752 67.753	22.507 22.575 24.862 26.575 24.862 26.575 24.862 28.062 29.335 30.5631 28.063 33.583 34.459 35.907 37.077 37.583 38.895 39.612 40.403 40.4053 40.4053 40.4053 40.91451 41.3534 41.3534 41.746 41.3534 41.746 41.3534 41.7565 42.795 42.795 42.795 42.795 42.795 43.156 43.789 43.789 43.789 43.789 43.789 43.789 43.789 43.789 43.789 43.789 43.789 43.789 43.8164 43.859 43.859 43.859 43.859 43.859 43.859 43.859 43.859 43.859 43.859 43.859 43.859 43.859 43.859 43.8765 43.7733 43.7655 43.7733 43.7733 43.7733 43.7733 43.7733 43.7733 43.7733 43.7733 43.7733 43.7733 43.7733 43.7733 43.7733 43.7733 43.7733 43.7733 43.7733 43.7733	2.5071 2.5745 4.8616 6.5324 8.0624 9.3353 10.531 11.6537 12.703 13.583 14.459 15.221 15.907 17.583 18.063 18.895 19.235 19.612 20.402 20.653 20.903 21.351 21.354 21.354 21.354 21.354 21.354 21.353 22.522 22.702 22.795 22.937 22.5389 22.523 22.702 22.795 22.795 22.795 22.795 22.795 22.795 22.795 22.795 22.795 22.795 22.795 22.795 22.795 22.795 22.795 22.795 22.795 22.795 22.795 23.766 23.765 23.765 23.765 23.765 23.765 23.765 23.765 23.765 23.765 23.765 23.765 23.765 23.765 23.765 23.765 23.765 23.765 23.765 23.7791 23.782 23.859 23.8681 23.859 23.866 23.866 23.866 23.866 23.872 23.876 23.872 23.876 23.872 23.876 23.872 23.876 23.872 23.876 23.876 23.877 23.876 23.876 23.877 23.876 23.877 23.773 23	

76	12.504	13	1.7643	84,371	47.286	67,286	43.643	23.643	
77	12.67	13.175	1.7679	84.825	47.44	67.44	43.72	23.72	
78	12.837	13.335	1.7712	85.419	47.682	67.682	43.841	23.841	
79	13.004	13.499	1.7745	86.107	47.973	67.973	43.986	23.986	
80	13.17	13.674	1.7781	86.67	48.185	68.185	44.092	24.092	
81	13.337	13.853	1.7818	87.202 87.592	48.376	68.376	44.188	24.188	
82	13.504	14.027	1.7854	87.592	48.491	68.491	44.245	24.245	
83	13,67	14.202	1.7891	87.999	48.612	68.612	44.306	24.306	
84	13.837	14.368	1.7925	88.452	48.764	68.764	44.382	24.382	
85	14.004	14.541	1.7962	88.89	48.902	68.902	44.451	24.451	
86	14.17	14.721	1.8	89.328	49.035	69.035	44.518	24.518	
87 88	14.337 14.504	14.884	1.8034	89.578	49.073	69.073	44.537	24.537	
89	14.504	15.064 15.26	1.8072 1.8114	89.875 90.329	49.127 49.256	69.127	44.563	24.563	
90	14.837	15.419	1.8148	90.529	49.304	69.256 69.304	44.628 44.652	24.628	
91	15.004	15.609	1.8189	90.86	49.331	69.331	44.666	24.652 24.666	
92	15.17	15.76	1.8222	91.079	49.357	69.357	44.679	24.679	
93	15.337	15.934	1.8259	91.439	49.445	69.445	44.723	24.723	
94	15.504	16,119	1.83	91.814	49.534	69.534	44.767	24.767	
95	15.67	16.304	1.834	92.268	49.665	69.665	44.833	24.833	
96	15.837	16.442	1.837	92.627	49.773	69.773	44.887	24.887	
97	16.004	16.633	1.8412	92.956	49.83	69.83	44.915	24.915	
98	16.17	16.814	1.8452	93.3 93.737	49.902	69.902	44.951	24.951	
99	16.337	16.974	1.8488	93.737	50.037	70.037	45.018	25.018	
100	16.504	17.166	1.8531	94.081	50.099	70.099	45.049	25.049	
101	16.67	17.326	1.8567	94.41	50.172	70.172	45.086	25.086	
102	16.837	17.489	1.8604	94.879	50.319	70.319	45.16	25.16	
103	17.004	17.682	1.8647	95.27	50.404	70.404	45.202	25,202	
104 105	17.17 17.325	17.836	1,8682	95.567	50.463	70.463	45.231	25.231	
103	17.323	18.004	1.872	95.739	50.445	70.445	45.223	25.223	

TRIAXIAL TEST

Project: PLUM CREEK SITE 6 Boring No.: F10-1409 Sample No.: 11-1058 Test No.: 3

Soil Description: HOLE 300.1

Remarks:

Specimen Height: 2.99 in Specimen Area: 1.53 in^2 Specimen Volume: 75.29 cc

Wt. Container + Wet Soil, gm Wt. Container + Dry Soil, gm

Liquid Limit: ---

Container ID

Location: TX Tested By: SKM Test Date: 5/25/11 Sample Type: CORE

Project No.: 11-1058 Checked By: SKM Depth: Elevation: N/A

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: ---

Filter Strip Correction: 0.00 psi Membrane Correction: 1.65 lb/in Correction Type: Uniform

Measured Specific Gravity: 2.74

Before Test Trimmings	Before Test Specimen+Ring	After Test Specimen+Ring	After Trim
	-44		
150.12 118.83	150.12 118.83	149.99 118.83	2. 1'
118.83 26.33	118.83 26.33 0.74	118.83 26.22 0.72	1.
212	98.04 98.536	100.00 99.536	

Initial

End of Initialization

Wt. Container, gm
Wt. Dry Soil, gm
Water Content, %
Void Ratio
Degree of Saturation, %
Dry Unit Weight, pcf

End of Consolidation/A

End of Saturation

End of Consolidation/B

End of Shear

At Failure

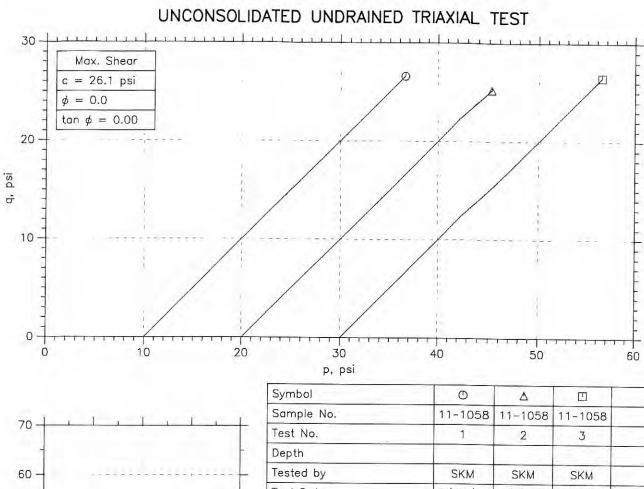
Project: PLUM CREEK SITE 6 Boring No.: F10-1409 Sample No.: 11-1058 Test No.: 3

Soil Description: HOLE 300.1 Remarks:

Specimen Height: 2.99 in Specimen Area: 1.53 in^2 Specimen Volume: 75.29 cc

Location: TX Tested By: SKM Test Date: 5/25/11 Sample Type: CORE

Project No.: 11-1058 Checked By: SKM Depth: Elevation: N/A


Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Filter Strip Correction: 0.00 psi Membrane Correction: 1.65 lb/in Correction Type: Uniform

Measured Specific Gravity: 2.74

VACORA CARACT		4.4		3.131.65			on types official
Liquid Limit:	0.00000		astic Limit:		V77777.04	Measured	Specific Gravity:
Time min	Vertical Strain %	Corrected Area in^2	Deviator Load lb	Deviator Stress psi	Vertical Stress psi	p psi	q psi
1 0 0.17057 3 0.33723 4 0.50402 5 0.67055 6 0.83722 7 1.004 8 1.1705 9 1.3372 10 1.504 11 1.6705 12 1.8372 13 2.004 14 2.1705 15 2.3372 16 2.5039 17 2.6705 18 2.8372 19 3.0039 20 3.1705 21 3.3371 22 3.5039 23 3.6705 24 3.8371 25 4.0039 24 4.1704 27 4.3371 28 4.5039 29 4.6704 30 4.8371 31 5.0039 32 5.1704 33 5.3371 34 5.5038 35 5.6704 36 6.5038 41 6.6704 42 6.837 43 7.0038 44 7.1703 45 7.337 46 7.5038 47 7.6703 48 7.5038 49 8.0038 50 8.1703 51 8.337 52 8.5037 53 8.6703 54 8.8369 55 9.0037 56 9.1703 57 9.3369 58 9.5037 59 9.6703 50 9.8369 61 10.004 62 10.17 63 10.337 64 10.504 65 10.67 66 10.837 67 11.004 67 11.337 70 11.504 71 11.67 72 11.837 73 12.004 74 12.17 75 12.337	0.15479 0.32816 0.66716 0.83279 1.00467 1.3591 1.5588 1.7259 1.88572 2.2259 2.7445 2.9364 2.7445 2.9364 3.633 3.8033 3.95655 4.1516 3.6457 3.633 3.95655 4.1516 5.3216 4.4874 4.68518 4.9967 5.1763 5.33113 5.56685 6.1917 6.5416 6.7165	1.5374 1.5374 1.5431 1.5433 1.55479 1.55534 1.55631 1.55699 1.57569 1.57569 1.57563 1.5814 1.58688 1.5929 1.5957 1.6071 1.6157 1.66157 1.66157 1.66246 1.66246 1.66332 1.6332 1.6424 1.6546 1.6577 1.66577 1.66577 1.66577 1.66577 1.66577 1.6736 1.7759 1.775	2.1734 2.2828 5.8166 8.2401 13.228 17.934 21.828 22.83 28.676 31.479 36.932 39.293 41.6578 46.361 48.456 50.629 52.6677 56.586 58.275 61.574 64.623 65.929 70.869.799 71.91 72.895 73.786 74.677 75.506 69.799 71.91 77.148 77.6647 77.148 77.6647 77.148 77.655 78.524 78.852 79.243 79.243 80.384 81.651 82.187 88.496 84.919 86.123 86.764 87.374 88.496 88.968 89.364 90.772 91.111 91.3173 91.892 92.205 92.377	0 1.4664 1.4669 3.7453 5.3011 8.5069 11.519 11.519 11.8318 20.073 21.83 21.83 21.83 21.83 21.83 21.83 21.83 21.83 31.048	30 31.4067 31.4067 33.745 35.301 38.507 41.519 43.996 46.214 48.318 50.071 51.83 57.856 56.378 57.248 60.506 61.82 63.048 64.218 65.36 66.348 67.35 68.261 69.70 70.009 70.781 71.202 72.886 73.465 73.965 73.646 73.965 73.646 73.965 73.965 73.955 80.486 80.6925 81.083 81.282 81.563 81.282 81.563 81.779 81.795 81.795 81.795 81.795 81.795 81.795 81.795 81.795 81.795 81.795 81.795 81.795 81.795 81.795 81.908 81.976 81.976 81.976	30 30.703 31.873 32.651 34.253 36.998 38.107 39.159 40.035 41.735 42.463 43.1928 44.624 45.253 45.259 47.68 48.673 49.59 50.039 50.750	0.70321 0.773344 1.8727 2.6506 4.2535 5.7597 6.9981 8.1072 9.1591 10.036 10.915 11.735 12.463 13.189 13.928 14.624 15.253 15.91 16.524 17.109 17.68 18.174 18.675 19.13 19.59 20.004 20.39 20.726 21.101 21.443 21.733 22.009 22.272 22.501 22.728 22.935 23.887 23.622 23.686 23.762 23.823 23.887 23.93 23.94 23.41 23.48 23.57 23.622 23.686 23.762 23.823 23.887 23.93 23.988 24.02 24.064 24.086 24.143 24.1412 24.582 24.729 25.113 25.243 25.3462 24.729 25.113 25.243 25.3862 25.541 25.641 25.781 25.889 25.985

76 77	12.504 12.67	12.948 13.131	1.7633 1.767	92.705 92.971	52.043 52.076	82.043 82.076	56.021 56.038	26.021
78	12.837	13.294	1.7703	93.253	52.131	82.131	56.066	26.038 26.066
79	13.004	13.469	1.7739	93.456	52.134	82.134	56.067	26.067
80	13.17	13.647	1.7776	93.675	52.142	82.142	56.071	26.071
81	13.337	13.828	1.7813	93.972	52.192	82.192	56.096	26.096
82	13.504	13.979	1.7844	94.41	52.34	82.34	56.17	26.17
83	13.67	14.153	1.788	94.613	52.341	82.341	56.17	26.17
84	13.837	14.329	1.7917	94.769	52.313	82.313	56.157	26.157
85	14.004	14.501	1.7953	94.988	52.323	82.323	56.162	26.162
86	14.17	14.674	1.799	95.254	52.358	82.358	56.179	26.179
87	14.337	14.855	1.8028	95.473	52.361	82.361	56.181	26.181
88	14.504	15.027	1.8064	95.723	52.387	82.387	56.193	26.193
89	14.67	15.177	1.8096	95.895	52.383	82.383	56.192	26.192
90	14.837	15.366	1.8137	96.208	52.432	82.432	56.216	26.216
91	15.004	15.538	1.8174	96.489	52.473	82.473	56.237	26.237
92	15.17	15.705	1.821	96.724	52.492	82.492	56.246	26.246
93	15.337	15.889	1.825	96.958	52.498	82.498	56.249	26.249
94	15.504	16.074	1.829	97.193	52.504	82.504	56.252	26.252
95	15.67	16.236	1.8325	97.365	52.49	82.49	56.245	26.245
96	15.837	16.4	1.8361	97.662	52.542	82.542	56.271	26.271
97 98	16.003 16.17	16.583	1.8401	97.943	52.573	82.573	56.287	26.287
99	16.337	16.764	1.8441	98.194	52.588	82.588	56.294	26.294
100	16.503	16.916 17.098	1.8475 1.8516	98.553	52.68	82.68	56.34	26.34
101	16.67	17.269	1.8554	98.882 99.116	52.735 52.746	82.735 82.746	56.367	26.367
102	16.837	17.444	1.8593	99.413	52.788	82.788	56.373	26.373
103	17.004	17.642	1.8638	99.695	52.804	82.804	56.394 56.402	26.394
104	17.17	17.797	1.8673	99.945	52.833	82.833		26.402
105	17.337	17.965	1.8711	100.4	52.96	82.96	56.417 56.48	26.417
106	17.366	18.002	1.872	100.48	52.977	82.977	56.488	26.48 26.488
	-, , , , , ,	25,502	1.072	100.10	22.377	02.317	30.400	20.400

70 +	1	1	i L	-1
60				
			<i>T</i>	m
50		1		<u>A</u> -
100 40 - 100	1			
		1	1	
30 + -	/	×	Î	
20 - #/		- 1	1	1
			i.	
10 —	- + -			
0			, ,	
0	5	10 CAL STF	15	20

Symbol	0	Δ	I	
Sample No.	11-1058	11-1058	11-1058	
Test No.	1	2	3	
Depth				
Tested by	SKM	SKM	SKM	
Test Date	5/25/11	5/25/11	5/25/11	
Checked by	SKM	SKM	SKM	
Check Date				
Diameter, in	1.397 .	1.398	1.398	
Height, in	3.009 -	3.009	2.993	
Water Content, %	27.1 .	26.9	26.3	
Dry Density, pcf	97.43 .	97.47	98.54	
Saturation, %	98.1	97.8	98.0	
Void Ratio	0.756	0.755	0.736	
Confining Stress, psi	10	20	30	
Undrained Strength, psi	26.6	25.23	26.49	
Max. Dev. Stress, psi	53.2	50.46	52.98	
Strain at Failure, %	14	17.8	18	
Strain Rate, %/min	1.9	1	1 .	
Measured Specific Gravity	2.74	2.74	2.74	
Liquid Limit				
Plastic Limit		-	7000	
Plasticity Index				

Natural
Resources
Conservation

Service

Project: PLUM CREEK SITE 6

Location: TX

Remarks:

Project No.: 11-1058

Boring No.: F10-1409

Sample Type: CORE

Description: HOLE 300.1

Phase calculations based on start and end of test.

SHEAR TEST DATA CELL NO. 0 LOAD CH. 2053 UU BURETTE NO. STRAIN CH. LAB. NO. 11-1058 MACHINE NO. qu P.P. CH. CUBAR 11-1058-10 TEST DATE _ 5 25 11 VS COMPACTED Gs_ 2.74. UNDIŞTURBED ____ BP KUNGIN at HZD Cell \abla PSI Base PSI Test O PSI B in 1%/min. RATE OF STRAIN SPECIMEN DATA MOISTURE DATA TECHNICIAN 5km TECHNICIAN SA DIAMETER INITIAL IN MACHINE INITIAL FINAL TOP IN. 1.396 221.2 WET WT. SPEC. + CAN (GM.) MIDDLE IN. 1.397 DRY WT. SPEC. + CAN 89.4 (GM.) 1.398 IN. BOTTOM WT. MOISTURE (GM.) 1.397 MEAN DIAMETER IN. WT. CAN 71,45 (GM.) 3009 IN. HEIGHT WT DRY SOIL (GM.) GM. 14987 MOIST WT. 27.05 26.98 PERCENT MOISTURE IN.2 END AREA 1.533 DRY UNIT WEIGHT (GM/CC) IN.3 VOLUME 4.612 PERCENT POROSITY MOIST UNIT WT. PCF 123.79 THEORETICAL SAT. % CONSOLIDATION DATA PERCENT SAT. @ START TECHNICIAN FAILURE SKETCH 117,96 EXTENSIOMETER READINGS DATE: INITIAL READING IN. TIME: IN. TIME: **FINAL READING** HT. DEFORMATION IN. 45 INITIAL BURETTE READING CM FINAL BURETTE READING CM IN.3 VOL. CHANGE CC x 0.061 IN.3 CONS. VOLUME OF SPECIMEN CONS. HEIGHT OF SPECIMEN IN. IN. 2 AVG. AREA OF CONS. SPECIMEN CONSOLIDATED MOIST UNIT WT. PCF INITIAL DRY DENSITY = 4 97.43 FINAL DRY DENSITY = REMARKS: 3010 3010 1400 3008 1394 1397 1398 Skin Checked by: _ Date: 5/26/11

SHEAR TEST DATA CELL NO. 20f3 LOAD CH. UU BURETTE NO. __ STRAIN CH. LAB. NO. 11-1058 11-1058-20 qu MACHINE NO. P.P. CH. CUBAR TEST DATE 5/25/1 VS COMPACTED Gs_ 2.74 BP UNDISTURBED RUN O Nat. Hro 20 PSI B ____ RATE OF STRAIN_ Cell 20 PSI Base 0 PSI Test_ in./%/min. SPECIMEN DATA MOISTURE DATA TECHNICIAN ____ TECHNICIAN ___ DIAMETER INITIAL IN MACHINE INITIAL FINAL TOP IN. 394 WET WT. SPEC. + CAN 221.65 (GM.) IN. MIDDLE 1.399 DRY WT. SPEC. + CAN 189,90 (GM.) BOTTOM IN. 1.399 WT. MOISTURE (GM.) MEAN DIAMETER IN. 1.398 WT. CAN 71,73 (GM.) HEIGHT IN. 3009 WT DRY SOIL (GM.) GM. 26.94 MOIST WT. 15000 PERCENT MOISTURE 26.87 IN.2 END AREA 1535 DRY UNIT WEIGHT (GM/CC) VOLUME IN.3 4.619 PERCENT POROSITY MOIST UNIT WT. 12372 PCF THEORETICAL SAT. % CONSOLIDATION DATA PERCENT SAT. @ START FAILURE SKETCH 118117 TECHNICIAN EXTENSIOMETER READINGS DATE: INITIAL READING IN. TIME: FINAL READING IN. TIME: HT. DEFORMATION IN. INITIAL BURETTE READING CM FINAL BURETTE READING CM IN.3 VOL. CHANGE CC x 0.061 IN.3 CONS. VOLUME OF SPECIMEN CONS. HEIGHT OF SPECIMEN IN. IN. S AVG. AREA OF CONS. SPECIMEN CONSOLIDATED MOIST UNIT WT. PCF INITIAL DRY DENSITY = 97.46 FINAL DRY DENSITY = 99.44 REMARKS: 1391 3010 3.010 3007 1394

Skm

Checked by:

Date: 5/86/11

SHEAR TEST DATA

CELL NO.	M	LOAD CH.		2	0f3 1
UU BURETTE NO		STRAIN CH.			
qu MACHINE NO	3	P.P. CH	LAB. N	o. 11-10	558
CUBAR				058-30	
VS COMPACTED			TEST DA	TE 5/25/	11
BP UNDISTURBED _		Gs 2.74			
V RUNCO Nad H20					
Cell_30_PSI Base_0	PSI Test_	30 PSI B	RATE OF	STRAIN	in. // /min.
SPECIMEN DAT	'A	MOIST	URE DAT	ra -	
TECHNICIAN SWY		TECHNI	CIAN SAN		
DIAMETER	INITIAL IN MACHIN	IE.		INITIAL	FINAL
TOP IN.	11.398	WET WT. SPEC. + CAN	(GM.)		22174
MIDDLE IN.	1.397	DRY WT. SPEC. + CAN	(GM.)		190.58
BOTTOM IN.	1.398	WT. MOISTURE	(GM.)		
MEAN DIAMETER IN.	1.398	WT. CAN	(GM.)		71.75
HEIGHT IN.	2993	WT DRY SOIL	(GM.)		
MOIST WT. GM.	150.12	PERCENT MOISTURE		26.33	26,22
END AREA IN. ²	1.535	DRY UNIT WEIGHT	(GM/CC)		
VOLUME IN.9	4.594	PERCENT POROSITY			
MOIST UNIT WT. PCF	1 - A - 2 - 2 - 2 - 2 - 2				
CONSOLIDATION D.	ATA	PERCENT SAT, @ START			
TECHNICIAN	Α.	FAILURE SKETCH	118.83		
EXTENSIOMETER READINGS DA	TF.		11 0.00		
INITIAL READING IN. TIM					1
FINAL READING IN. TIM					
HT, DEFORMATION IN.	7			1	
				100g	
INITIAL BURETTE READING	CM			1	
FINAL BURETTE READING	CM	×		1	1
	0.18				
VOL. CHANGE CC x 0.061	IN.3		1		
CONS. VOLUME OF SPECIMEN	IN. ³				
CONS. HEIGHT OF SPECIMEN	IN.				1
AVG. AREA OF CONS. SPECIMEN	IN. 2				
CONSOLIDATED MOIST UNIT WT.	PCF		*		
		772/10 12 NO. 10 10 10 10 10 10 10 10 10 10 10 10 10	90	2	
		INITIAL DRY DENSITY FINAL DRY DENSITY		53	
REMARKS: 1401	1000				
1394	2993				
1401	2992				
1393	*				
1401					
1396					
	Checked	lby:Skm	Da	ite:	26/11

Shear Test Data Specimen #1

Project: PLUM CREEK SITE 6

State: TX

11-1058 Lab No: Test Specifications: Specfic Gravity (Gs): 2.74

Shear Cell No .: Confining Pressure: 10 psi -

Top Diameter: 1.396 inches

Middle Diameter: 1.397 inches (Either measure two middle diameters

Middle Diameter: 1.397 inches or enter in the same value) Bottom Diameter: 1.398 inches

Height of Specimen: 3.009 inches Moist Weight of Specimen: 149.87 gms. -Mean Diameter: 1.397 inches

End Area: 1.533 sq. inches Volume of Specimen: 4.612 cubic inches

Moist Unit Weight: 123.79 pcf -(multiply gms/cubic inch by 3.8095 to to achieve pcf)

Extensiometer Height Deformation: inches Initial Volume of Base Cell: ml. Final Volume of Base Cell: ml.

Is the Large Burette being Used? no (yes or no) CC

Calibrated Area of the Base Burette:

Burette Volume: CC note 1.00 ml = 1.00 cc

Burette Volume: cubic inches Consolidated Volume: 4.612 cubic inches Assumed Consolidated Height: inches

Assumed Height after Consolidation: 3.009 inches

Moist Weight of Specimen + Can: 221.23 gms. Dry Weight of Specimen + Can: 189.41 gms. Weight of Can: 71.45 gms. Weight of Water: 31.82 gms. Weight of Dry Specimen: 117.96 gms.

Initial Water Content: 27.05 percent Initial Dry Density: 97.43 pcf Percent Saturated: 98.08 percent

Initial Void Ratio: 0.756

Initial Diameter: 1.397 inches Initial Height: 3.009 inches

Final Water Content: 26.98 percent Final Dry Density: 97.43 pcf Percent Saturated: 97.81 percent

Final Void Ratio: 0.756

Final Diameter*: 1.397 inches Final Height: 3.009 inches

*Diameter is estimated to be unchanged

Checked by: SKM Shear Test Data Specimen #2

Project: PLUM CREEK SITE 6

State: TX

11-1058 Lab No: Test Specifications: Specfic Gravity (Gs): 2.74

Shear Cell No .:

Confining Pressure: 20 psi

Top Diameter: 1.394 inches

1.399 inches Middle Diameter: (Either measure two middle diameters Middle Diameter: 1.399 inches or enter in the same value)

Bottom Diameter: 1.399 inches Height of Specimen: 3.009 inches Moist Weight of Specimen: 150.00 gms. Mean Diameter: 1.398 inches

End Area: 1.535 sq. inches 4.619 cubic inches Volume of Specimen:

Moist Unit Weight: 123.72 pcf (multiply gms/cubic inch by 3.8095 to to achieve pcf)

Extensiometer Height Deformation: inches Initial Volume of Base Cell: ml.

Final Volume of Base Cell: ml.

Is the Large Burette being Used? no (yes or no) CC

Calibrated Area of the Base Burette:

Burette Volume: CC note 1.00 ml = 1.00 cc

Burette Volume: cubic inches Consolidated Volume: 4.619 cubic inches Assumed Consolidated Height: inches

Assumed Height after Consolidation: 3.009 inches

Moist Weight of Specimen + Can: 221.65 gms. Dry Weight of Specimen + Can: 189.90 gms. Weight of Can: 71.73 gms. Weight of Water: 31.75 gms. Weight of Dry Specimen: 118.17 gms. -

Initial Water Content: 26.94 percent Initial Dry Density: 97.46 pcf Percent Saturated: 97.74 percent

Initial Void Ratio: 0.755

Initial Diameter: 1.398 inches Initial Height: 3.009 inches

26.87 percent , Final Water Content: Final Dry Density: 97.46 pcf Percent Saturated: 97.50 percent

Final Void Ratio: 0.755

Final Diameter*: 1.398 inches Final Height: 3.009 inches

*Diameter is estimated to be unchanged

Checked by: SKM Shear Test Data Specimen #3

Project: PLUM CREEK SITE 6 State: TX 11-1058 Lab No: **Test Specifications:** Specfic Gravity (Gs): 2.74 Shear Cell No .: Confining Pressure: 30 psi Top Diameter: 1.398 inches -Middle Diameter: 1.397 inches -(Either measure two middle diameters Middle Diameter: 1.397 inches or enter in the same value) 1.398 inches Bottom Diameter: Height of Specimen: 2.993 inches -Moist Weight of Specimen: 150.12 gms. -Mean Diameter: 1.398 inches -End Area: 1.535 sq. inches Volume of Specimen: 4.594 cubic inches 124.48 pcf Moist Unit Weight: (multiply gms/cubic inch by 3.8095 to to achieve pcf) Extensiometer Height Deformation: inches Initial Volume of Base Cell: ml. Final Volume of Base Cell: ml. Is the Large Burette being Used? no (yes or no) Calibrated Area of the Base Burette: CC Burette Volume: note 1.00 ml = 1.00 cc CC Burette Volume: cubic inches Consolidated Volume: 4.594 cubic inches Assumed Consolidated Height: inches Assumed Height after Consolidation: 2.993 inches Moist Weight of Specimen + Can: 221.74 gms. Dry Weight of Specimen + Can: 190.58 gms. Weight of Can: 71.75 gms. Weight of Water: 31.16 gms. Weight of Dry Specimen: 118.83 gms. Initial Water Content: 26.33 percent Initial Dry Density: 98.53 pcf Percent Saturated: 98.02 percent Initial Void Ratio: 0.736 Initial Diameter: 1.398 inches Initial Height: 2.993 inches Final Water Content: 26.22 percent Final Dry Density: 98.53 pcf Percent Saturated: 97.61 percent Final Void Ratio: 0.736 1.398 inches Final Diameter*:

*Diameter is estimated to be unchanged

Final Height:

Checked by: SKM

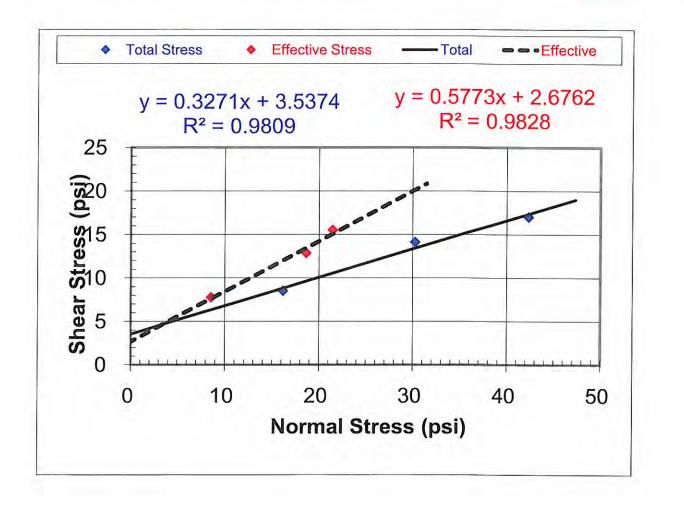
2.993 inches

Mohr Circle Program

SITE NAME: Plum Creek Site 6

STATE: TX

SAMPLE NO: 11-1059


F10-1410 Total Strength Parameters: Zero Cohesion: PHI: 18.1 degrees 18.1 degrees Slope y= Failure Criterion: C: 509 psf 3.54 psi Effective Strength Parameters: Maximum Dev. Stress PHI': 30.0 degrees 30.0 degrees Slope y= ✓ Maximum Stress Ratio C': 385 psf 2.68 psi Max. Pore Pressure Stress path analysis from p-q plot: <= 10% Strain</p> PHI': 30.2 degrees Selected Points

C': 367

psf

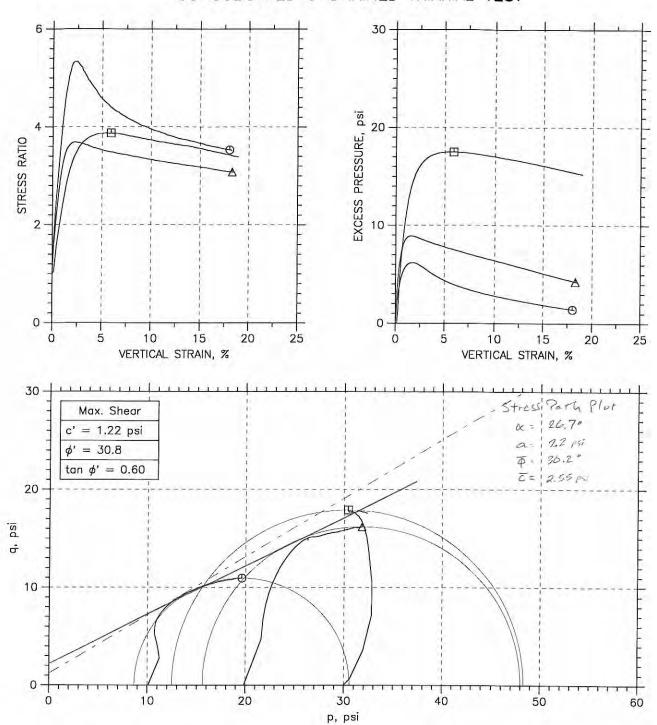
(All inputed values in the chart are in psi)

CELL PRESSURE	DEVIATOR STRESS AT FAILURE	PORE PRESSURE AT FAILURE	PERCENT STRAIN (Optional Entry)
10	17.9	5.9	2.4
20	29.7	8.8	2.2
30	35.8	17.5	5.4

CONSOLIDATED UNDRAINED TRIAXIAL TEST 30 Max. Shear c = 6.03 psi $\phi = 15.3$ $tan \phi = 0.27$ 20 psi σ Ø 10 0 10 20 30 40 50 60 p', psi Symbol 0 Δ Sample No. 11-1059 11-1059 11-1059 70 Test No. 1 2 3 Depth 7-9' 7-9' 7-91 60 Diameter, in 1.398 1.393 1.399 Height, in 3.015 3.01 3.003 Water Content, % Initial 21.1 20.3 20.8 50 Dry Density, pcf 99.04 104. 100.3 psi Saturation, % 82.0 89.3 83.4 DEVIATOR STRESS, Void Ratio 0.689 0.609 40 0.668 Water Content, % 26.2 24.0 24.7 Dry Density, pcf 98.26 101.8 100.6 30 Saturation*, % 100.0 100.0 100.0 Void Ratio 0.703 0.644 0.663 0 Back Press., psi 20 99.93 100.2 100 Ver. Eff. Cons. Stress, psi 10.07 19.83 29.97 Shear Strength, psi 10.95 16.2 17.91 10 Strain at Failure, % 18 18.3 5.93 Strain Rate, %/min 0.06 0.06 0.06 B-Value 0.00 0.00 0 0.00 0 10 20 Measured Specific Gravity 2.68 2.68 2.68 VERTICAL STRAIN, % Liquid Limit Plastic Limit Project: PLUM CREEK SITE 6 Location: TX Project No.: 11-1059 Natural Boring No.: F10-1410

Resources

Service

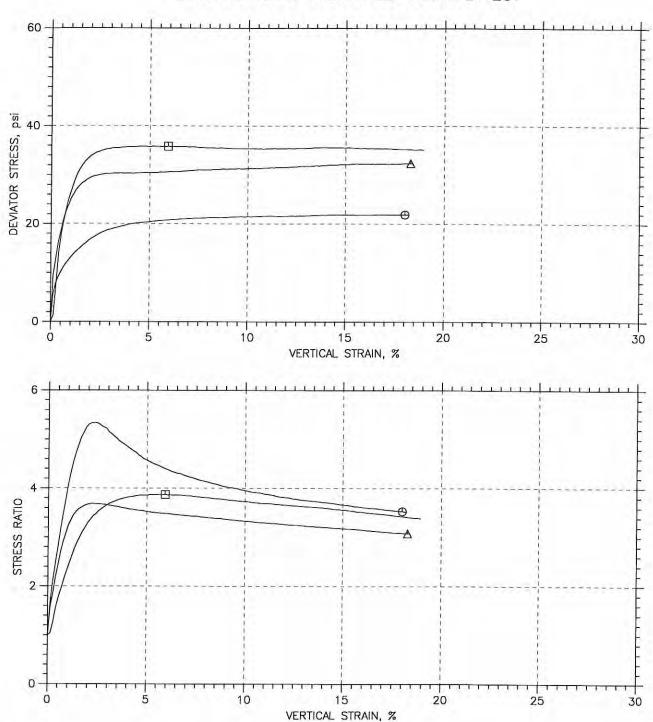

Conservation

Sample Type: CORE

Remarks:

Description: HOLE 302.1

CONSOLIDATED UNDRAINED TRIAXIAL TEST



	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
O	11-1059	1	7-9'	SKM	5/24/11	SKM		11-1059-10eng.dat
Δ	11-1059	2	7-9'	SKM	5/24/11	SKM		11-1059-20eng.dat
	11-1059	3	7-9'	SKM	5/24/11	SKM		11-1059-30eng.dat

Natural
Resources
Conservation
Service

Pemarks:		
Description: HOLE 302.1		
Boring No.: F10-1410	Sample Type: CORE	
Project: PLUM CREEK SITE 6	Location: TX	Project No.: 11-1059

CONSOLIDATED UNDRAINED TRIAXIAL TEST

	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Φ	11-1059	1	7-9'	SKM	5/24/11	SKM		11-1059-10eng.dat
Δ	11-1059	2	7-9'	SKM	5/24/11	SKM		11-1059-20eng.dat
	11-1059	3	7-9'	SKM	5/24/11	SKM		11-1059-30eng.dat

0	NRCS
	Natural
	Resources
	Conservation
	Service

	Remarks:		
)	Description: HOLE 302.1		
	Boring No.: F10-1410	Sample Type: CORE	
,	Project: PLUM CREEK SITE 6	Location: TX	Project No.: 11-1059

CONSOLIDATED UNDRAINED TRIAXIAL TEST 30 Max. Shear c' = 1.22 psi $\phi' = 30.8$ $tan \phi' = 0.60$ 20 psi ō 10 0 10 20 30 40 50 60 p, psi Symbol 0 Δ Sample No. 11-1059 11-1059 11-1059 8 Test No. 3 Depth 7-9' 7-9' 7-9 Diameter, in 1.398 7 1.393 1.399 Height, in 3.015 3.01 3.003 Water Content, % 21.1 20.3 20.8 6 Dry Density, pcf 99.04 104. 100.3 Saturation, % 82.0 89.3 83.4 STRESS RATIO Void Ratio 0.689 0.609 0.668 5 Water Content, % 26.2 24.0 24.7 Shear Dry Density, pcf 98.26 101.8 100.6 Saturation*, % 100.0 100.0 100.0 Before Void Ratio 0.703 0.644 0.663 Back Press., psi 99.93 100.2 100 3 Ver. Eff. Cons. Stress, psi 10.07 19.83 29.97 Shear Strength, psi 10.95 16.2 17.91 2 Strain at Failure, % 18 18.3 5.93 Strain Rate, %/min 0.06 0.06 0.06 B-Value 0.00 0.00 0.00 10 0 15 20 Measured Specific Gravity 2.68 2.68 2.68 VERTICAL STRAIN, % Liquid Limit ___ Plastic Limit Project: PLUM CREEK SITE 6 Location: TX Project No.: 11-1059

Natural Resources Conservation

Service

Boring No.: F10-1410

Sample Type: CORE
Description: HOLE 302.1

Remarks:

ì		
1	2	f
1	Ξ	
	j	
-	۲	
*	×	
ł	ì	
1	×	
í		

Project: PLUM CREEK SITE 6	location.
g No.: F10-1410	P P
Sample No.: 11-1059	1
No.: 1	
	Standard Composition

Soil Description: HOLE 302,1 Remarks:

1: TX 3y: SKM te: 5/24/11 Type: CORE

Project No.: 11-1059 Checked By: SKM Depth: 7-9' Elevation: N/A

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Specimen Height: 3.02 in Specimen Area: 1.53 in/2 Specimen Volume: 75.84 cc

Liquid Limit:

Container ID

Plastic Limit: ---

Filter Strip Correction: 0.00 psi Membrane Correction: 1.65 lb/in Correction Type: Uniform

Measured Specific Gravity: 2.68

After Test Specimen+Ring Before Test Specimen+Ring Before Test Trimmings

120.32 21.09 0.69 82.02 99.043 145.7 145.7 120.32 0 120.32

223 71.13 120.32 26.22

151.87 120.32 120.32 26.22 0.70 100.00 98.257

After Test Trimmings

wt. Container + wet Soil, gm
wt. Container, gm
wt. Dry Soil, gm
wt. Dry Soil, gm
water Content, %
Void Ratio
Degree of Saturation, %
Dry Unit Weight, pcf Initial

End of Initialization

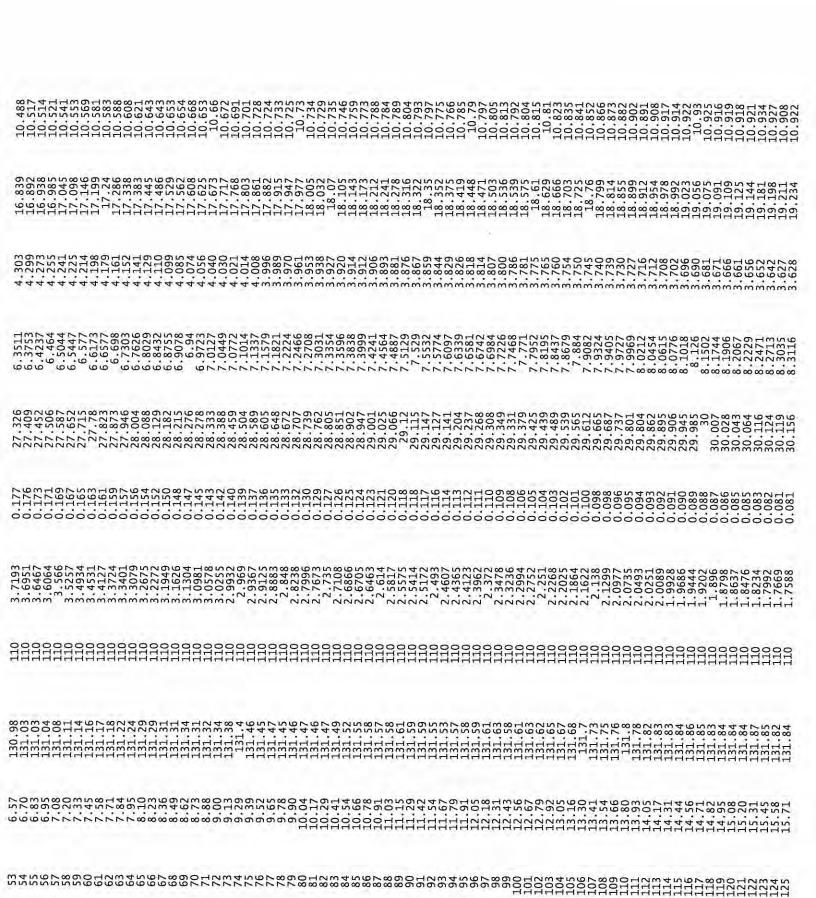
End of Consolidation/A

End of Saturation

End of Consolidation/B

End of Shear

At Failure


×		COL	Spe	Vertical Stress psi	111 1121 1121 1121 1121 1121 1121 1121
Project N Checked B Depth: 7-		Filter St Membrane Correctio	Measured	Horizontal Stress psi	
				Pressure psi	1001.53. 888 888 888 888 888 888 888 888 888 8
/11 RE		00 in 42 0.00 d l 0.00 d l	Î.	Deviator Stress psi	5. 58. 7. 80. 96. 7. 80. 96. 7. 80. 96. 80. 96. 80. 96. 80. 96. 80. 96. 80. 96. 96. 96. 96. 96. 96. 96. 96. 96. 96
ion: TX d By: S Date: 5 e Type:		ton Area: ton Fricti ton Weight	stic Limit:	Deviator Load lb	8. 11. 1 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Loc Tes Tes		arr srrq srrq srrq	РТа	Corrected Area in/2	11111111111111111111111111111111111111
SITE 6	E 302.1	in In/2 34 cc		Vertical Strain %	0.000000000000000000000000000000000000
LUM CREEK : F10-1410 : 11-1059 1	ription:	ght: 3.0 a: 1.53 ume: 75.	mit:	Time min	988 888 888 888 888 888 888 888 888 888
ロロのフ	Soil Desc Remarks:	Specimen Specimen Specimen	inquid Li		11111111111111111111111111111111111111
	roject: PLUM CREEK SITE 6 Location: TX oring No.: F10-1410 Checked By: SKM Tested By: SKM Test Date: 5/24/11 Depth: 7-9; est No.: 1 Sample Type: CORE	roject: PLUM CREEK SITE 6 Location: TX Oring No.: F10-1410 Tested By: SKM Test Date: 5/24/11 Sample Type: CORE Elevation: N/A emarks:	roject: PLUM CREEK SITE 6 Location: TX oring No.: F10-1410 ample No.: 11-1059 Tested By: SKM Test Date: 5/24/11 est No.: 1 sample Type: CORE oil Description: HOLE 302.1 pecimen Height: 3.02 in Piston Area: 0.00 in A2 pecimen Area: 1.53 in A2 pecimen Volume: 75.84 cc pecimen Volume: 75.84 cc Location: TX Checked By: SKM Depth: 7-9; Chec	roject: PLUM CREEK SITE 6 Location: TX oring No.: F10-1410 ample No.: 11-1059 checked By: SKM Tested By: SKM Test Date: 5/24/11 sample Type: CORE oil Description: HOLE 302.1 pecimen Height: 3.02 in pecimen Area: 1.53 in 2 pecimen Area: 1.53 in 2 pecimen Volume: 75.84 cc plastic Limit: Measured Specific Gravity: 2.68	roject: PLUM CREEK SITE 6 Location: TX Tested By: SKM Tested By: SKM Test Date: 5/24/11 sample No.: 11-1059 est No.: 1 oil Description: HOLE 302.1 pecimen Height: 3.02 in pecimen Area: 1.53 in A2 pecimen Area: 1.53 in A2 pecimen Volume: 75.84 cc pecimen Area Time Strain Time Strain orrected Deviator Deviator Time Strain Time Strain orrected Deviator Deviator Time Strain Time Strain Area Location: TX Checked By: SKM Depth: 7-9 Elevation: 0.00 ps Elevation: 0.00 ps Elevation: 1.65 lb/in Elevation: N/A Elevation: N/A Elevation: N/A Elevation: N/A Elevation: N/A Elevation: N/A Reasured Specific Gravity: 2.68 Measured Specific Gravity: 2.68 Measured Specific Gravity: 2.68 Time Stress InhA Area Load Stress Pore Stress Stress Stress Stress Pore Pore Horizontal Vertical Pore Horizontal Pore Horizontal Pore Horizontal Pore Horizontal Pore Stress Stress Stress

121 84	121.01	121.00	121.02	121.00	121.00	121.03	121.21	121.00	121.9	107	10T-	131.8/	131.89	131 88	121 0	10110	TOT: 37	131.91	131 80	121.00	COTTT
110	110	2110	110	110	011	110	110	OTT	110	110	770	OTT	110	110	110	110	OTT	OTT	110	110	7.7
101 65	101 62	101.61	101.50	101.58	101.55	101 54	101	101 49	101	101.101	101.10	107.	101.42	101.39	101 37	35.101	7	TOT: 24	101.33	101 32	17:11
21.84	21.83	21 854	71.833	21 875	21.89	21.907	21.877	21.896	21.857	21.876	21.00	27.000	27.888	21.88	21.899	21 906	2000	COC. T7	21.89	71 891	1
40.529	40,591	40.699	40.73	40.884	40.977	41.07	41.085	41.193	41.193	41 301	41 363	1000	4T.4/T	41.518	41.626	41.718	71 706	DC / .T+	41.826	41.888	
1.8028	1.8059	1.8085	1.8112	1.8143	1.817	1.8194	1.8222	1.8251	1.8279	1.8308	1 8339	0920	T. 0200	1.8392	1.842	1.8453	1 8481	101011	1.8507	1.8531	
15.955	16.101	16.221	16.347	16.49	16,612	16.722	16.85	16.982	17.11	17.242	17, 379	17 51	11.77	679.77	17.746	17.889	18 016	1	18.131	18.237	
252	254	256	258	260	262	264	566	268	270	272	274	276	077	9/7	280	282	284	000	786	287.48	

ത		cion: 0.00 psi : 1.65 lb/in iform	avity: 2.68	Effective p	0080724766082045844906104048687871478106864478686808447
: No.: 11-1059 1 By: SKM 7-9: N/A		trip Correction Correction on Type: Un	Specific G	Stress Ratio	7.500 7.
Project Checked Depth:		Filter Si Membrane Correction	Measured	Effective Horizontal Stress	
				Effective Vertical Stress psi	10.07 115.8862 117.017 117.017 118.3922 117.018 117.018 117.018 117.018 117.018 117.018 117.018 118.3922 117.018 118.3922 117.018 118.3922 117.018 118.3922 117.018 118.3922 117.018 1
KM /24/11 CORE		0.00 inv2 on: 0.00 lb : 0.00 lb	1	A Parameter	6.9 0.000 0.0293 0.000 0.0293 0.000 0.0293 0.000 0.0293 0.000 0.0293 0.0
ocation; TX ested By: SKN est Date; 5/7 ample Type: 0		ston Area: ston Fricti ston Weight	lastic Limit	Excess Pore Pressure psi	2.66 2.66
36FW		2.2.2	Δ.	Total Horizontal Stress psi	
SITE 6	LE 302.1	2 in in/2 84 cc		Total Vertical Stress psi	111. 111. 111. 111. 112. 113.
:: PLUM CREEK No.: F10-1410 No.: 11-1059	cription: HO	Height: 3.0 Area: 1.53 Volume: 75.	imit:	Vertical Strain	00000000111111111111111111111111111111
Project: Boring N Sample N Test No.	Soil Des Remarks:	Specimen Specimen Specimen	Liquid Li		11111111111111111111111111111111111111

ps.

0.921	10.92	0 915	0 927	0.017	110	0.938	0.945	0.954	0 939	070	000	676.0	0.938	0.934	0 944	10 01	100	10.95	0.953	250 0	1	0.945	10.946	
19.25	19.27	19.79	19 31	10.21	100	19.3b,	19.39	19.41	19.42	19 45	10.	13.40	19.47	19.49	19.57	19 5	10	13.5/	19.59	19.61	0	73.0	19,628	
3.620	3.615	3.606	3.604	3 597	1000	185.5	3.591	3.588	3.577	3.574	200	00.00	3.562	3.554	3.552	3 541	100	5.538	3,535	3.530	5 533	2.563	3.521	
8.3358	8.3519	8.3761	8.3923	8 4084	3000	0.4243	8.4488	8.4649	8,4891	8.5052	2007	1020.00	8.53/5	8.5617	8.5778	8.6101	0	7070.0	8.6424	8.6585	2 6777	14/0.0	8.6827	
30,177	30,192	30.206	30.246	30.242	301	0000	30.338	30,372	30.366	30.401	30 387	2000	30.414	30.43	30.465	30.49	303 05	20.250	30.548	30.568	30 565	10000	30.574	
0.079	0.02	0.078	0.077	0.076	0 075	0.00	0.074	0.073	0.072	0.071	0.071	100	0.00	0.069	0.068	0.067	990 0	000.0	0.065	0.064	0.064		0.063	
1.7346	1./185	1.6943	1.6781	1.662	1.6459	1000	1.021/	1.6055	1.5813	1.5652	1.541	1 5330	1.0020	1.508/	1.4926	1.4603	7 4442	100	T. 428	1.4119	1.3958	10000	T.38//	
110	OTT	110	110	110	110	110	TTO	OTT	110	110	110	110	1	110	110	110	110	1	OTT	770	110	17	OTT	
131.84	151.64	131.83	131.85	131,83	131.88	131 90	101.03	131.91	131.88	131.9	131.86	131 88	101	101.01	131.89	T31.88	131.9	101	121.91	151.91	131.89	121 00	131.09	
15.84	12.30	TP. TO	77.9T	16.35	16.49	16.61	TO:01	7/107	10.85	16.98	17.11	17 74	17 20	17.50	TC:/T	79.77	17.75	17 90	00.01	70.07	18.13	10 24	17.01	

TRIAXIAL TEST

9 Project: PLUM CREEK SITE Boring No.: F10-1410 Sample No.: 11-1059 Test No.: 2

Soil Description: HOLE 302.1 Remarks:

Location: TX Tested By: SKM Test Date: 5/24/11 Sample Type: CORE

Project No.: 11-1059 Checked By: SKM Depth: 7-9' Elevation: N/A

Specimen Height: 3.01 in Specimen Area: 1.52 in/2 Specimen Volume: 75.17 cc

Liquid Limit:

Container ID

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: ---

Filter Strip Correction: 0.00 psi Membrane Correction: 1.65 lb/in Correction Type: Uniform

Measured Specific Gravity: 2.68

Before Test Trimmings

After Test Specimen+Ring Before Test Specimen+Ring

226.43 196.36 71.18 125.18 24.02

After Test Trimmings

150.59 125.18

150.59 125.18

125.18

Wt. Container + Wet Soil, gm Wt. Container, gm Wt. Container, gm Wt. Dry Soil, gm Water Content, % Void Ratio Degree of Saturation, % Dry Unit Weight, pcf

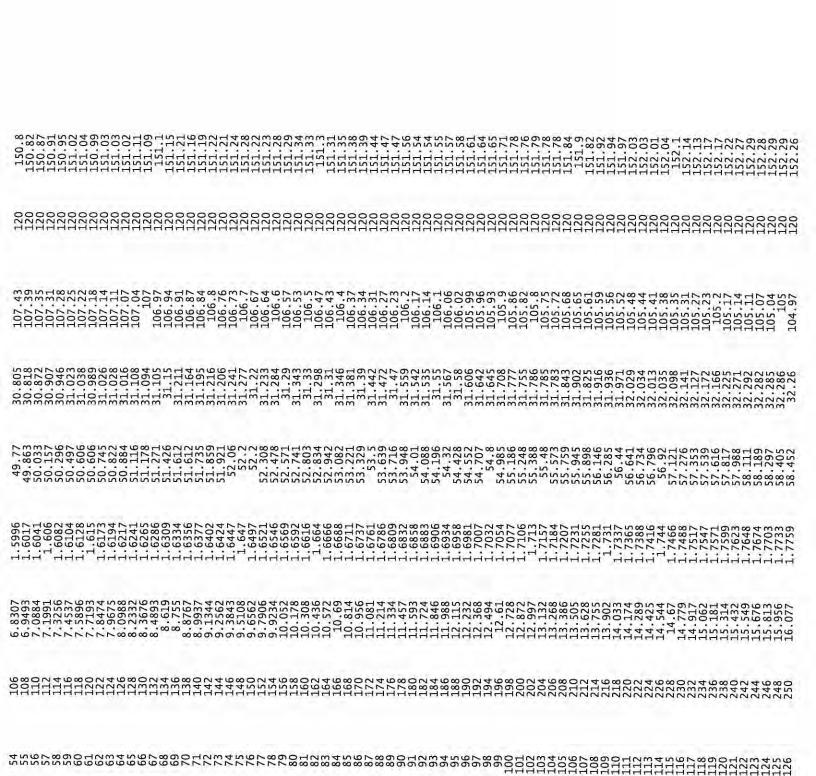
155.25 125.18 0.64 100.00 101.78

125.18 20.30 0.61 89.27 103.96

Initial

End of Initialization

End of Consolidation/A

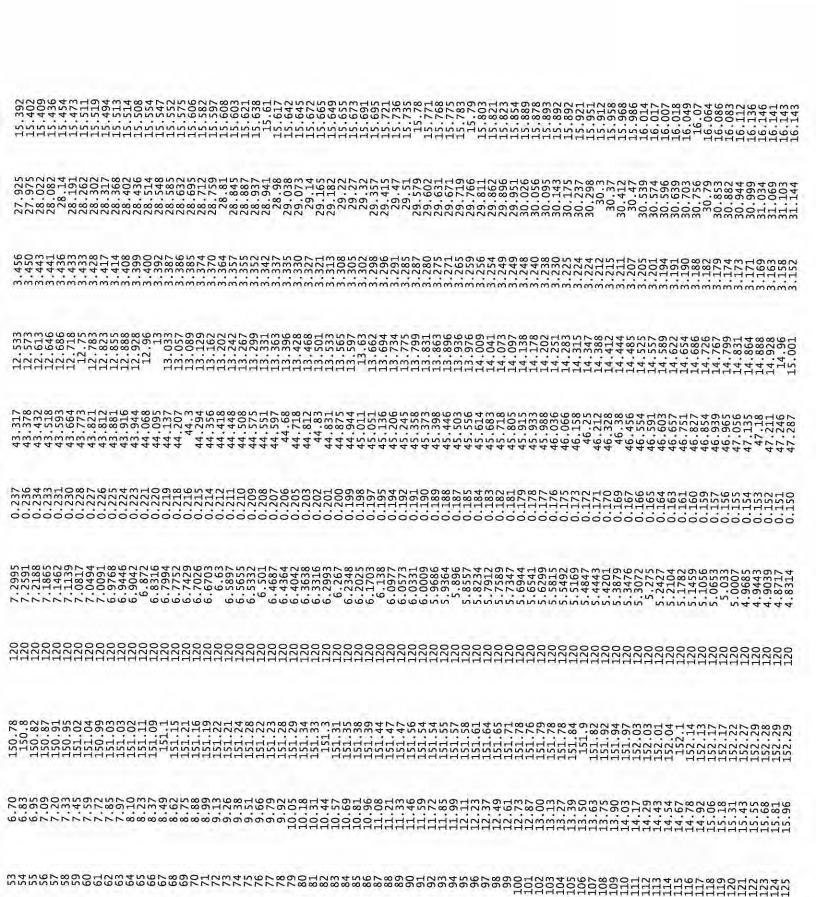

End of Saturation

End of Consolidation/B

End of Shear

At Failure

		0.00 psi 5 lb/in	y: 2.68		
s >		Filter Strip Correction: Membrane Correction: 1.6 Correction Type: Uniform	cific Gravi	Vertical Stress psi	120.0.52 120.0.
Project N Checked B Depth: 7- Elevation			Measured	Horizontal Stress psi	000000000000000000000000000000000000000
				Pressure psi	100 100 100 100 100 100 100 100 100 100
1/11 0RE		00 in 42 of 10 of	1	Deviator Stress psi	9. 11. 14. 15. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16
ation: TX ted By: SKM t Date: 5/2 ple Type: C		ton Area: ton Fricti ton Weight	stic Limit:	Deviator Load 1b	224.122 224.0098 33.33.321 224.0098 33.0098
Loc Tes Tes		er P sir	P1	Corrected Area in^2	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
SITE 6	E 302.1	l in nA2 17 cc	mit:	Vertical Strain %	0.00 0.00
-UM CREEK : F10-1410 : 11-1059	ption:	ght: 3.0 a: 1.52 ume: 75.		Time	24.00038888888888888888888888888888888888
Project: Boring No Sample No Test No.:	Soil Desc Remarks:	ecimen ecimen ecimen	duid		40w4ravevæg0444444444444444444444444444444444444
	roject: PLUM CREEK SITE 6 Location: TX oring No.: F10-1410 ample No.: 11-1059 Sample Type: CORE Elevation: N/A	roject: PLUM CREEK SITE 6 Location: TX oring No.: F10-1410 Tested By: SKM ample No.: 11-1059 est No.: 2 Sample Type: CORE emarks:	roject: PLUM CREEK SITE 6 Location: TX Tested By: SKM ample No.: 11-1059 Tested By: SKM Test Date: 5/24/11 est No.: 2 oil Description: HOLE 302.1 pecimen Height: 3.01 in pecimen Area: 1.52 in Area pecimen volume: 75.17 cc Location: TX Checked By: SKM Depth: 7-9	roject: PLUM CREEK SITE 6 Location: TX Tested By: SKM ample No.: 11-1059 checked By: SKM Test Date: 5/24/11 sample Type: CORE oil Description: HOLE 302.1 emarks: pecimen Height: 3.01 in pecimen Area: 1.52 in A2 pecimen	roject: PLUM CREEK SITE 6 Location: TX Tested By: SKM Tested By: SKM Test Date: 5/24/11 sample No.: 11-1059 checked By: SKM Test Date: 5/24/11 sample Type: CORE oil Description: HOLE 302.1 emarks: oil Description: HOLE 302.1 emarks: pecimen Height: 3.01 in piston Area: 0.00 in A2 pecimen Area: 1.52 in A2 pecimen Volume: 75.17 cc plastic Limit: plastic Limit: Time Strain Area Load Stress pressure Time Strain Time St



152.25	152.28	77.75	127.71	152.26	152 23	152.26	152.20	153.22	153.27	15.25	47.7CT	17.757	124.3	152.34	152.37	157.38	157 41	152.38	111111
120	120	021	027	170	120	120	120	120	120	120	120	120	120	170	170	120	120	120	
104.93	104.91	104.00	104.00	104.81	104.78	104.75	104 72	104 68	104 65	104 62	104 50	104 55	104.50	10.40	104.47	104.44	104.42	104.39	
32.252	22.70	33.26	007.20	22.238	32.232	32.257	32.244	32.232	32,273	32.745	32 275	32 301	37 335	יייייייייייייייייייייייייייייייייייייי	22.303	32.378	32.408	32.384	
58.529	28.00	28.00	100.00	20.922	58.978	59.133	59.21	59.287	59.473	59.52	59.674	59.814	20 084	721	00. TO	297.09	60.433	60.479	
1.7785	784	1 7869	7802	1.7095	1./921	1.7952	1.798	1.8008	1.8039	1.8067	1.8095	1.8121	1.8151	1 8187	10000	1.8208	1.824	1.8265	
16.199	16.458	16.594	16 715	1000	10.835	16.979	17.11	17.238	17.382	17.507	17.636	17.753	17.891	18 038	0.00	16.140	18.291	18,405	
52	26	00	209	200	70	64	99	89	20	72	74	92	78	80	000	70	84	74	

ed By: S	6		tion: 0.00 psi : 1.65 lb/in iform	_	ctiv	22. 22. 22. 23. 4.15. 22. 25. 25. 25. 25. 25. 25. 25. 25. 2
	11-105 SKM /A		Strip Correc e Correction ion Type: Un	ific G	Stress Ratio	111172722888888888888888888888888888888
	BY S			ed Sp		23.55
	Project Checked Depth:		Filter Membran Correct		Effective Horizontal Stress psi	11.10.093835111.11.12.22.23.34.7.12.22.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.33.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.12.23.34.7.33.34.7.12.23.34.7.33.3
					Effective Vertical Stress psi	226.33 286.33 30.02 30.03 30.0
	4/11 24/11 CORE		0.00 inv2 on: 0.00 lb dl 00.00 :	7	A Parameter	5.5 (100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ocation: TX ested By: S	ested By: SKM est Date: 5/2 ample Type: C		ston Area: ston Fricti ston Weight	astic Limit:	Excess Pore Pressure psi	2.92.0 6.8478 7.92767 7.92767 7.92767 7.92867 7.92867 8.838319 8.838319 8.838319 8.838319 8.838319 8.838319 8.838319 8.838319 8.838319 8.838319 8.838319 8.838319 7.758444 7.75818 7.75818 7.75818 7.75818 7.75818 7.75818 7.75818
	27.7.8		2.2.2	Fd	Total Horizontal Stress psi	000000000000000000000000000000000000000
roject: PLUM CRE oring No.: F10-1	ITE	E 302.1	in n^2 7 cc		Total Vertical Stress psi	129.129 133.444 133.444 146.93 146.93 146.93 146.93 146.93 146.93 146.93 146.93 146.93 146.93 150.03 150.03 150.33
	EK S 410 59	HOL	3.01 52 i 75.1		F E%	01108800558143147080408847774808898787999808770480847777
	: PLUM CRE No.: F10-1 No.: 11-10	scription:	Height: Area: 1. Volume:	Limit:	Vertica Strai	0000000144444468899444475894474478896759689847447
	Project Boring Sample Test No	Soil Des Remarks	Specimen Specimen Specimen	Liquid 1		11111111111111111111111111111111111111

6.6.4 6.

psi

16.08 16.20 16.20 16.20 16.35 16.35 17.11 17.11 17.15

16.13 16.126 16.126 16.121 16.1116 16.1129 16.1129 16.1120 16.1130 16.1130 16.1130 16.1130 16.1130 16.1130 16.1130 16.1130 16.1130 16.1130 16.1130 16.1130 16.1130 16.1130

331.16 331.16 331.17 331.17 331.17 331.17 331.77 331.77 331.77 331.77 341.77 363.77 36

155.003 155.003 155.003 155.1128 155.11

47.293 47.317 47.317 47.342 47.444 47.550 47.662 47.662 47.763 47

00.148 00.1448 00.1447 00.1448 00.133 00.133 00.133 00.133 00.133 00.133 00.133 00.133

44.74991 76688 74.74968 74.74968 74.74968 74.74968 74.74968 74.7497 74

1552.25 1552.25 1552.25 1552.25 1552.25 1552.25 1552.33 1552.33 1552.33 1552.33 1553.3

-
in
tri
TES
4
4
н
×
X
Ĥ
TR

The state of the same of the same	O LONG TO SERVICE STATE OF THE PARTY OF THE
oject:	Location:
0	50
Sample No. 11-1059	
1	י
EST NO	Sample T

n: TX By: SKM te: 5/24/11 Type: CORE

Soil Description: HOLE 302.1 Remarks:

Specimen Height: 3.00 in Specimen Area: 1.54 in/2 Specimen Volume: 75.65 cc

Piston Area: 0.00 in^2 Piston Friction: 0.00 lb Piston Weight: 0.00 lb

Plastic Limit: ---

Liquid Limit: ---

After Test Trimmings

After Test Specimen+Ring

Before Test Specimen+Ring

Before Test Trimmings

223 192.94 71.41 121.53 24.73

151.59 121.53 121.53 24.73 0.66 100.00

121.53 20.78 0.67 83.37 100.3

146.79

146.79

121.53

Wt. Container + Wet Soil, gm
Wt. Container, gm
Wt. Container, gm
Wt. Dry Soil, gm
Water Content, %
Void Ratio
Degree of Saturation, %
Dry Unit Weight, pcf Container ID

Initial

End of Initialization

End of Consolidation/A

End of Saturation

End of Consolidation/B

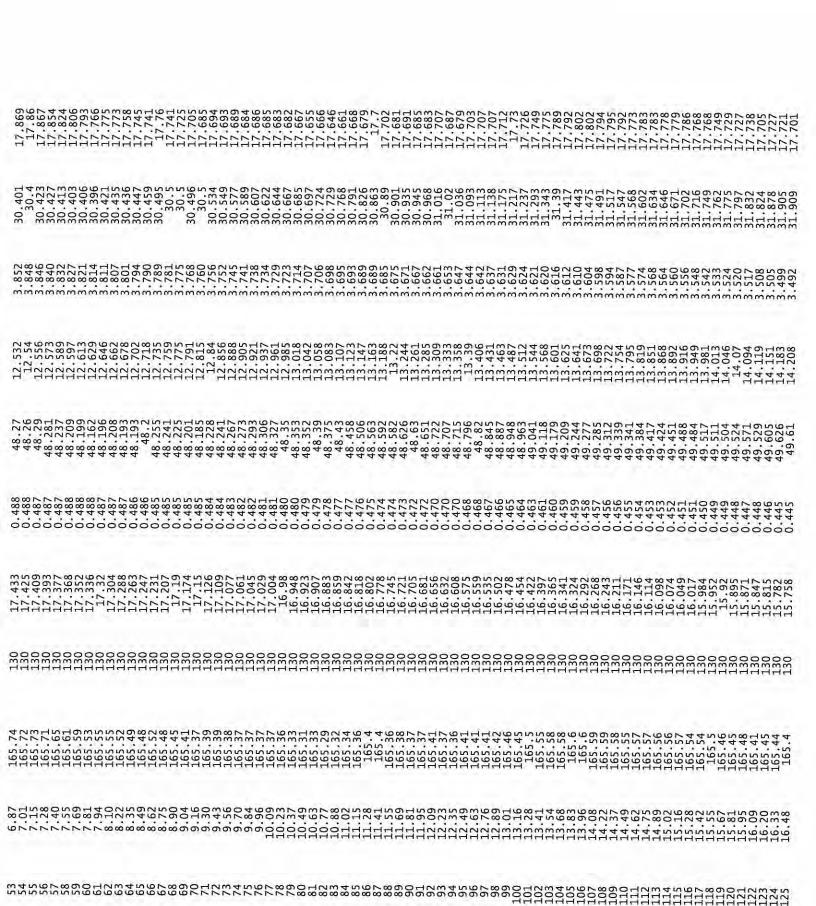
End of Shear

At Failure

Project No.: 11-1059 Checked By: SKM Depth: 7-9' Elevation: N/A

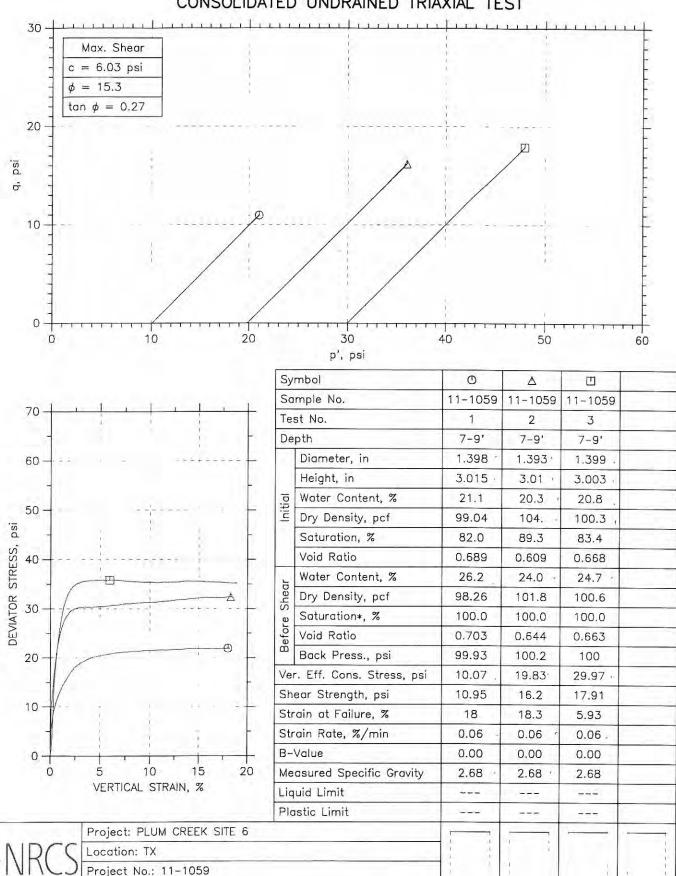
Filter Strip Correction: 0.00 psi Membrane Correction: 1.65 lb/in Correction Type: Uniform

Measured Specific Gravity: 2.68


			ion: 0.00 psi 1.65 lb/in form	avity: 2.68		
	No.: 11-1059 By; SKM 7-9; ON: N/A		rip Correct Correction: n Type: Uni	Specific Gr	Vertical Stress psi	131 131 132 134 137 137 138 148 137 138 148 148 148 148 148 148 148 148 148 14
	Project Checked Depth: 7		Filter St Membrane Correctio	Measured	Horizontal Stress psi	
					Pore Pressure psi	10000000000000000000000000000000000000
AXIAL IESI	4/11 ORE		.00 in^2 n: 0.00 lb 0.00 lb	1	Deviator Stress psi	1.71.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
IN.	ocation: TX ested By: SKM est Date: 5/2, ample Type: CC		ston Area: 0. ston Friction ston Weight:	astic Limit:	Deviator Load 1b	10.010.010.010.010.010.010.010.010.010.
	Loc Tes Tes		7.7.7	PI	Corrected Area inA2	11.55286 1.
	SITE 6	LE 302.1	0 in in^2 65 cc		Vertical Strain	0.000.330.000.330.000.330.330.000.330.
	PLUM CREEK :: F10-1410 :: 11-1059	cription: HO	Height: 3.00 Area: 1.54 Volume: 75.0	imit:	Time	64.00033 65.00039 66.00033 66.0003
	Project: F Boring No Sample No Test No.:	Soil Desc Remarks:	Specimen Specimen Specimen	Liquid Li		47844888888888888888888888888888888888

165.42 165.38 165.4	165.39 165.37 165.35	165.28	165.29 165.24 165.22	165.19 165.19 165.21 165.19
130	130 130 130 130 130	1300	0000 0000 0000 0000 0000 0000 0000 0000 0000	000000 RRRRR RRRRR
115.74 115.71 115.68	115.65 115.62 115.59 115.57	115.53 115.5 115.48	115.45 115.42 115.39	115.35 115.31 115.27 115.26
35.422 35.381 35.399	35.386 35.386 35.356	35.28 35.289 35.293	35.289 35.237 35.221	35.194 35.208 35.188 35.178
63.362 63.396 63.563	63.646 63.713 63.796 63.913	63.88 64.03 64.147	64.247 64.264 64.347	64.531 64.681 64.748 64.781
1.7545	1.7635 1.7661 1.7688 1.7718	1.7744 1.7778 1.7807	1.7835	1,7952 1,7985 1,8012 1,8025
16.72 16.848 17.014	17.266 17.393 17.53	17.652 17.811 17.943	18.201 18.333	18.608 18.754 18.876 18.934
252 254 256	260 262 264 264	268 270 270	272 274 278	280 282 284 284.99

psi


			-			
			on: 0.00 ps 1.65 lb/in orm	avity: 2.68	Effective p psi	29.965 30
	: 11-1059 SKM N/A		p Correct rrection: Type: Uni	ecific Gr	Stress Ratio	11111117777722222222222222222222222222
	Project No. Checked By: Depth: 7-9' Elevation:		Filter Stri Membrane Co Correction	Measured Sp	Effective Horizontal Stress psi	28.35.99 28.39.96 28.39.
					Effective Vertical Stress psi	28
ATAL IESI	/11 RE		00 in 42 : 0.00 lb 0.00 lb	1	A Parameter	\$
LTL	ocation: TX ested By: SKM est Date: 5/24/ ample Type: COR		ton Area: 0.(ton Friction ton Weight:	stic Limit:	Excess Pore Pressure psi	0.02428 4.34622 6.33452 7.34622 9.2623 11.306 11.306 12.326 14.042 14.042 14.042 15.531 17.126 17
	Loc Tes Tes Sam		sign sign	РТа	Total Horizontal Stress psi	
	SITE 6	E 302.1	in n^2 5 cc		Total Vertical Stress psi	130 144.1 14
	LUM CREEK : F10-1410 : 11-1059 3	ription: HOL	eight: 3.00 rea: 1.54 i olume: 75.6	mit:	Vertical Strain %	0.0000001444444444444444444444444444444
	Project: P Boring No. Sample No. Test No.:	Soil Descr Remarks:	Specimen H Specimen A Specimen V	Liquid Lim		17224 200 11724 1171 1171 1172 1272 1272 1272 127

0.65853 7.173

17.71	17 711	17 601	1007	T/ .039	17.693	17.683	17 677	17.011	1/ ·0/0	17.64	17,645	17 647	779.77	T/ .044	17,618	17 611	TTOVIT	17.596	17 507	166 · 17	17.604	17 501	100.11	17,589		
31.943	31 975	31 070	20.00	32.02	32.038	37.06	32 087	20.70	277.70	32.114	32.144	32.17	22 102	261.76	32.198	32 223	24.263	32.249	22 283	707.70	32.305	32 327	100	54.331		
3.489	3.483	3 476	277	7/1	3.46/	3.460	3 453	200	1	5.43/	3.434	3.430	307 8	07+.0	3.417	3 410	2010	3.402	3 397	100	3,395	3 388	000	5.386		
14.232	14.264	14.288	14 321	11.0	14.345	14.378	14 47	17 737	110	14.4/5	14.499	14.523	14 547	10.11	14.58	14 612	100	14.653	14 685	1000	TO/. 6T	14.734	14.7	74./47		
49.655	49.686	49.67	49 77	100	49./3T	49.743	49.764	49.79	7110	43.734	49.788	49.816	49.836	000	49.81/	49.834	1	49.045	49.879		43. YL	49.921	20 01	49.94		
0.444	0.443	0.443	0.447	177	1111	0.441	0.440	0.439	000	0.400	0.438	0.438	0.437	1000	0.43/	0.436	100	0.400	0.434	VCV 0	404.0	0.433	0 133	0.4.0		
15.734	15.701	15.677	15.645	15 62	77.07	15.588	15.556	15.531	15 101	101.11	T2.46/	15.442	15,418	200	T2.380	15.353	15 212	17:31	15.28	15 361	13.504	15.232	15 224	177:07		
130	130	130	130	130	0 0	T20	130	130	130	1	T30	130	130	001	OCT.	130	130	000	T30	130	000	T30	130	1		
165.42	165.42	165,38	165.4	165 39	110	105.5/	165.35	165.36	165 28	000	165.29	165.29	165.29	165 24	TO	165.22	165 19	100	TP2.TA	165 21	1000	105.19	2 18	1		
16.60	77.07	16.85	17.01	17.14	11.11	17:17	17.39	17.53	17.65	17 01	70.77	17.94	18.07	18.20	70.00	18.33	18 47	10.01	TO.OL	18.75	000	TO.00	28.63			

CONSOLIDATED UNDRAINED TRIAXIAL TEST

Resources Conservation Service

Natural

Boring No.: F10-1410 Sample Type: CORE

Description: HOLE 302.1

Remarks:

SHEAR TEST DATA

CELL			LOAD CH.	= (1	10f2 7	TOP 1
	TTE NO.		STRAIN CH		Ir i	ACA
The same of the first of the same of the s	IINE NO.		P.P. CH). <u>//-/</u>	059
CUBAR			ė.		059-10	
	PACTED		0,0	TEST DAT	E 5/25/	<u> </u>
BP UND	STURBED		Gs 2.68 ·			
	n \	DOI -	1/1			. 61.
	MEN DATA	PSI Test_/	PSI B 0.97	RATE OF S		in.2%/min.
TECHNICIAN	w 1			ICIAN <u>SZE</u>		
DIAMETER	INITI	AL IN MACHIN			INITIAL	FINAL
TOP II	N.	1.398	WET WT. SPEC. + CAN	(GM.)		223,00
MIDDLE II	N.	1.397	DRY WT. SPEC. + CAN	(GM.)		191.45
BOTTOM II	N.	1.399	WT. MOISTURE	(GM.)		
MEAN DIAMETER IN.		1.398	WT. CAN	(GM.)		71.13
HEIGHT II	٧.	3.015	WT DRY SOIL	(GM.)		
MOIST WT. GN		145,70	PERCENT MOISTURE		21.09	26,22
END AREA II	V. ²		DRY UNIT WEIGHT	(GM/CC)		
	٧.٩	4.628	PERCENT POROSITY			
MOIST UNIT WT. F	PCF	11993	THEORETICAL SAT. %			
CONSOLII	DATION DAT	Α	PERCENT SAT. @ START			
TECHNICIAN	Skm		FAILURE SKETCH			
EXTENSIOMETER READI		5 (24)		12013 2		
INITIAL READING						
FINAL READING 61		7/5		1	1	
HT. DEFORMATION	IN.				/	
INITIAL BURETTE READII	NG 9.00	СМ			/55°	
FINAL BURETTE READIN	li-	CM		1		
		IN. ³				
VOL. CHANGE 0980 (CONS. VOLUME OF SPEC						
				\		
CONS. HEIGHT OF SPEC		IN. 2				
AVG. AREA OF CONS. SP						
CONSOLIDATED MOIST L	JINII WI.	PCF				
			INITIAL DRY DENSIT			e)
			FINAL DRY DENSIT	Y=_ 100	34	
REMARKS:	1399	30/0				
110.1	4 /	16				
100.4	1390	20				
9.7						
834.50	1398					
	1910	Checked	by:SKA	Da	te:	26/11

BASE SHEAR TEST DATA lofz Bottom = CELL NO. LOAD CH. UU BURETTE NO. _ STRAIN CH. LAB. NO. 11-1059 MACHINE NO. qu P.P. CH. 11-1059-20 CUBAR TEST DATE 5/25/11 VS COMPACTED Gs_268. UNDISTURBED ____ BP Cell 120 PSI Base 100 PSI Test C PSI B 0.98 RATE OF STRAIN 06 in 196 /min. SPECIMEN DATA MOISTURE DATA TECHNICIAN_SKM TECHNICIAN Sha FINAL INITIAL IN MACHINE INITIAL DIAMETER 1.393 226.43 IN. WET WT. SPEC. + CAN TOP (GM.) 96.36 1.393 MIDDLE IN. DRY WT. SPEC. + CAN (GM.) 1.393 WT. MOISTURE IN. BOTTOM (GM.) 1,393 WT. CAN MEAN DIAMETER IN. (GM.) HEIGHT IN. WT DRY SOIL (GM.) 24.02 GM. 20,30 MOIST WT. PERCENT MOISTURE IN.2 1.524 DRY UNIT WEIGHT END AREA (GM/CC) IN. 9 VOLUME 4.587 PERCENT POROSITY MOIST UNIT WT. PCF 125,06 THEORETICAL SAT. % CONSOLIDATION DATA PERCENT SAT, @ START TECHNICIAN SKIN FAILURE SKETCH 125.18 DATE: 5/24/11 EXTENSIOMETER READINGS INITIAL READING 0.0000IN. TIME: 2:05 FINAL READING 60 /94 IN. TIME: 7/5 HT. DEFORMATION IN. 9,20 CM INITIAL BURETTE READING 7.54 CM FINAL BURETTE READING IN.3 VOL. CHANGE 1.660 CC x 0.061 IN.3 CONS. VOLUME OF SPECIMEN 4,486 CONS. HEIGHT OF SPECIMEN 2.944 IN.

			INITIAL DRY DENSITY = _ FINAL DRY DENSITY = _	10395	- "
REMARKS:	1.395	3010			

120.6

AVG. AREA OF CONS. SPECIMEN

CONSOLIDATED MOIST UNIT WT.

95

Checked by: _

10

IN. 2

PCF

Sum

Date: 5 / 26 / 11

SHEAR TEST DATA

CELL NO.	F	LOAD CH.		10FZ	TOD 2
UU BURETTE NO	4	STRAIN CH.		11.	. = 0
qu MACHINE NO	6	P.P. CH		o. $1/-1$	
CUBAR				059-30	
VS COMPACTED	-		TEST DAT	TE _5/2.	5(1)
BP UNDISTURBED		Gs_2.68.			
		2 200		0/	>
		30 PSI B 0.98	RATE OF S	STRAIN	in 1/%)/min.
SPECIMEN DA	TA		URE DAT		
TECHNICIAN SKIN		TECHNIC	CIAN SM	^	
DIAMETER	INITIAL IN MACHIN	IE .		INITIAL	FINAL
TOP IN.	1.397	WET WT, SPEC. + CAN	(GM.)		223,00
MIDDLE IN.	1.398	DRY WT. SPEC. + CAN	(GM.)		192,94
BOTTOM IN.	1,402	WT. MOISTURE	(GM.)		
MEAN DIAMETER IN.	1.399	WT. CAN	(GM.)	E-factor exercised	71.41
HEIGHT IN.	3,003	WT DRY SOIL	(GM.)		
MOIST WT. GM.	14679	PERCENT MOISTURE		26.78	24.73
END AREA IN.®	1.537	DRY UNIT WEIGHT	(GM/CC)		
VOLUME IN.9	4.6/6	PERCENT POROSITY			
MOIST UNIT WT. PCF	121.14	THEORETICAL SAT. %			
CONSOLIDATION I	DATA	PERCENT SAT, @ START		Telegraph	
TECHNICIAN SKIN	\	FAILURE SKETCH	101 = 2		
	ATE: 5/84/4		121.53		
INITIAL READING O DOOD IN. T				1-	-\
FINAL READING 6.0333 IN, T		0			
HT. DEFORMATION IN.	IVIL. 7-2		/		
THE DET CHIRE CHOICE					
INITIAL BURETTE READING	O CM				
FINAL BURETTE READING 5.6	6 CM				1
27/12	8				
VOL. CHANGE 3.7 40 CC x 0.061	IN. ³				
	388 IN.3				
	855 IN.			1	-/
AVG. AREA OF CONS. SPECIMEN	IN. 2				
CONSOLIDATED MOIST UNIT WT.	PCF				
		8			
	3	Deliver State States		2 0	
		INITIAL DRY DENSITY			×
		FINAL DRY DENSITY	= 105,	51	
REMARKS:	99 300	w 4			
	94 3,00	4			
119,9		d			
13	94				
19.5	25				
1-1-	20			F	a lite
	Checked	d by:Skh	Da	ate:5_/	26/11

Project: PLUM CREEK SITE 6

State: TX

Lab No: 11-1059 Test Specifications: Specfic Gravity (Gs): 2.68

Shear Cell No.: 4
Confining Pressure: 10 psi

Top Diameter:

Middle Diameter:

1.398 inches

1.397 inches (Either measure two middle diameters

Middle Diameter:

1.397 inches or enter in the same value)

Bottom Diameter:

1.399 inches

Height of Specimen:

Moist Weight of Specimen:

Mean Diameter:

End Area:

3.015 inches

145.70 gms.

1.398 inches

1.535 sq. inches

Volume of Specimen: 4.628 cubic inches

Moist Unit Weight: 119.93 pcf (multiply gms/cubic inch by 3.8095 to

to achieve pcf)

Extensiometer Height Deformation: inches

Initial Volume of Base Cell:

Final Volume of Base Cell:

8.02 ml.

Is the Large Burette being Used? no (yes or no)

Calibrated Area of the Base Burette: 0.19610 cc

Burette Volume: 0.980 cc note 1.00 ml = 1.00 cc

Burette Volume: 0.060 cubic inches
Consolidated Volume: 4.568 cubic inches
Assumed Consolidated Height: 0.039 inches

Assumed Height after Consolidation: 2.976 inches

Moist Weight of Specimen + Can: 223.00 gms.

Dry Weight of Specimen + Can: 191.45 gms.

Weight of Can: 71.13 gms.

Weight of Water: 31.55 gms.

Weight of Dry Specimen: 120.32 gms.

Initial Water Content: 21.09 percent Initial Dry Density: 99.04 pcf

Percent Saturated: 82.01 percent Initial Void Ratio: 0.689

Initial Diameter: 1.398 inches Initial Height: 3.015 inches

Final Water Content: 26.22 percent
Final Dry Density: 100.34 pcf
Percent Saturated: 105.28 percent

Final Void Ratio: 0.668

Final Diameter*: 1.398 inches
Final Height: 2.976 inches

*Diameter is estimated to be unchanged

Project: PLUM CREEK SITE 6

State: TX

Lab No: 11-1059 Test Specifications:

Specfic Gravity (Gs): 2.68

Shear Cell No.: 5
Confining Pressure: 20 psi

Top Diameter: 1.393 inches

Middle Diameter: 1.393 inches (Either measure two middle diameters

Middle Diameter: 1.393 inches or enter in the same value)

Bottom Diameter:

Height of Specimen:

Moist Weight of Specimen:

Mean Diameter:

End Area:

1,393 inches

3,010 inches

150,59 gms.

1,393 inches

1,504 sq. inches

Volume of Specimen: 4.587 cubic inches

Moist Unit Weight: 125.06 pcf (multiply gms/cubic inch by 3.8095 to

to achieve pcf)

Extensiometer Height Deformation: inches Initial Volume of Base Cell: 9.20 ml. Final Volume of Base Cell: 7.54 ml.

Is the Large Burette being Used? no (yes or no)

Calibrated Area of the Base Burette: 0.19610 cc

Burette Volume: 1.660 cc note 1.00 ml = 1.00 cc

Burette Volume: 0.101 cubic inches
Consolidated Volume: 4.486 cubic inches

Assumed Consolidated Height: 0.066 inches
Assumed Height after Consolidation: 2.944 inches

Moist Weight of Specimen + Can: 226.43 gms.

Dry Weight of Specimen + Can: 196.36 gms.

Weight of Can: 71.18 gms.

Weight of Water: 30.07 gms.

Weight of Dry Specimen: 125.18 gms.

Initial Water Content: 20.30 percent - Initial Dry Density: 103.95 pcf
Percent Saturated: 89.26 percent

Initial Void Ratio: 0.609

Initial Diameter: 1.393 inches Initial Height: 3.010 inches

Final Water Content: 24.02 percent Final Dry Density: 106.30 pcf Percent Saturated: 112.17 percent

Final Void Ratio: 0.574

Final Diameter*: 1.393 inches
Final Height: 2.944 inches

*Diameter is estimated to be unchanged

Project: PLUM CREEK SITE 6

State: TX

Lab No: 11-1059 Test Specifications: Specific Gravity (Gs): 2.68

Shear Cell No.: 6
Confining Pressure: 30 psi

Top Diameter:

Middle Diameter:

Middle Diameter:

Middle Diameter:

1.398 inches

Or enter in the same value)

1.402 inches

1.402 inches

Height of Specimen:

Moist Weight of Specimen:

Mean Diameter:

End Area:

1.402 Inches
3.003 inches
146.79 gms.
1.399 inches
1.537 sq. inches

Volume of Specimen: 1.537 sq. inches 4.616 cubic inches

Moist Unit Weight: 121.14 pcf (multiply gms/cubic inch by 3.8095 to to achieve pcf)

Extensiometer Height Deformation: inches

Initial Volume of Base Cell: 9.40 ml.
Final Volume of Base Cell: 5.66 ml.

Is the Large Burette being Used? no (yes or no)

Calibrated Area of the Base Burette: 0.19570 cc

Burette Volume: 3.740 cc note 1.00 ml = 1.00 cc

Burette Volume:

Consolidated Volume:

Assumed Consolidated Height:

0.228 cubic inches
4.388 cubic inches
0.148 inches

Assumed Consolidated Height: 0.148 inches
Assumed Height after Consolidation: 2.855 inches

Moist Weight of Specimen + Can:

Dry Weight of Specimen + Can:

Weight of Can:

Weight of Water:

223.00 gms.

192.94 gms.

71.41 gms.

30.06 gms.

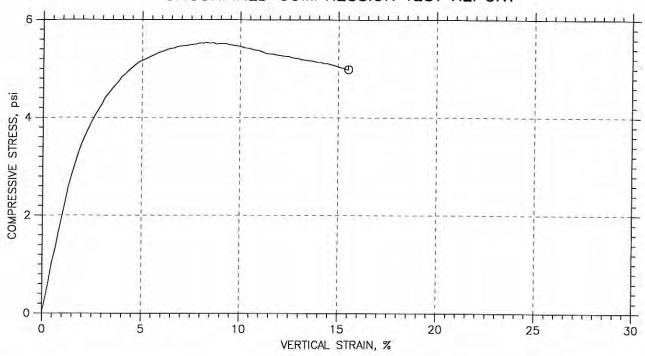
Weight of Dry Specimen: 121.53 gms.

Initial Water Content: 20.78 percent Initial Dry Density: 100.29 pcf

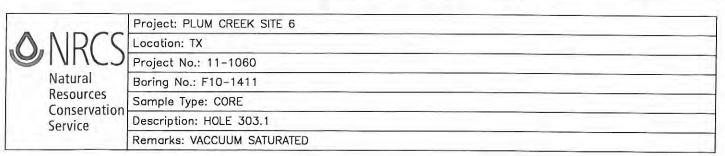
Percent Saturated: 83.36 percent Initial Void Ratio: 0.668

Initial Diameter: 1.399 inches Initial Height: 3.003 inches

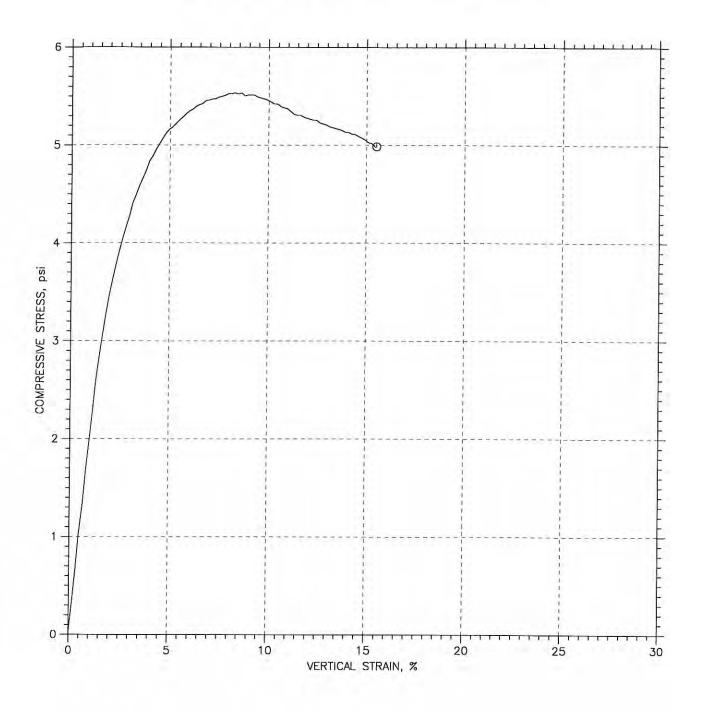
Final Water Content: 24.73 percent Final Dry Density: 105.51 pcf Percent Saturated: 113.17 percent


Final Void Ratio: 0.586

Final Diameter*: 1.399 inches
Final Height: 2.855 inches


*Diameter is estimated to be unchanged

MATERL FESTING RI		S. DEPARTMENT of AC AL RESOURCES CONSE		UNDIST CHAI	TURBED S RACTERIS	AMPLE STICS
PROJECT and STAT	reex 6	Tx				
TESTED AT		coln, NE	APPROVED BY		DATE	5-11
FIELD SAMPLE NO.	DEPTH (FT.) FROM TO	2011, 102	SAMPLE LOCATION		TYPE OF	LABORATORY
70-1411	7 8.5'	303,1			3'Shelbu	11-1060
COLOR	RELATIVE MOISTURE	CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER (T.S.F.)	VISUAL CLASSIFICATION (USCS)
Brown	Moist	Stiff		Smooth	1,5	CL
100 4 1 1	15.					
10 28.6 % Ya	1.5 g/cc			DESCRIBED BY 5	KMIRM	
	3"	REMARKS				84
T			1-	1 1	`	
	LOOS Larde		00	rad unif	orm co	ore-
N. Ede		- plastic	CL	mater	ia	
11	unital Heo		11	. /		
30	unituitie	-	Un	it weigh	ta H20	taken)
	SAVED	14")	-	- 11030
	10"	14				
T	10),				
1	Backey					
					thotos to	aken 2
FIELD SAMPLE NO.	DEPTH (FT.) FROM TO		SAMPLE LOCATION		TYPE OF SAMPLE	LABORATORY NO.
COLOR	RELATIVE MOISTURE	CONSISTENCY	POROSITY OR STRUCTURE	TEXTURE	POCKET PENETROMETER	VISUAL CLASSIFICATION
			OMOGRAM		(T.S.F.)	(USCS)
	W.					
ω% γ,	g/cc			DESCRIBED BY		
		REMARKS				37
		HEMAHAS				
T	•	1				
Ī						
		li .	100	•0		
		N.				
		4				
		The state of the s				
100						


UNCONFINED COMPRESSION TEST REPORT

Sy	rmbol	Ф			
Te	st No.	1			
	Diameter, in	1.399			
	Height, in	3.053			
Initial	Water Content, %	31,56			
<u>_</u>	Dry Density, pcf	89.72			
	Saturation, %	97.38			
	Void Ratio	0.872			
Ur	confined Compressive Strength, psi gu	5.534			
Ur	drained Shear Strength, psi 2/2 => Ca=	2.767	398 PSF		
Tir	ne to Failure, min	8.336	Record on .	400 psf e	
St	rain Rate, %/min	1		8.24 s Na. n	
Ме	asured Specific Gravity	2.69			
Lic	uid Limit	4-4			
Plo	ostic Limit				
Plo	asticity Index	207/			1
Fa	ilure Sketch				

UNCONFINED COMPRESSION TEST REPORT

A.NIRCS	Project: PLUM CREEK SITE 6	Location: TX	Project No.: 11-1060					
	Boring No.: F10-1411	Tested By: SKM	Checked By: SKM					
SIMICO	Sample No.: 11-1060	Test Date: 5/25/11	Depth: 7-8.5'					
Natural	Test No.: 1	Sample Type: CORE	Elevation: N/A					
Resources	Description: HOLE 303.1							
Conservation	Remarks: VACCUUM SATURATED							

UNCONFINED COMPRESSION TEST

Project: PLUM CREEK SITE 6
Boring No.: F10-1411
Sample No.: 11-1060
Test No.: 1

Soil Description: HOLE 303.1 Remarks: VACCUUM SATURATED

Specimen Height: 3.05 in Specimen Area: 1.54 in^2 Specimen Volume: 76.90 cc

Liquid Limit: ---Plastic Limit: ---Measured Specific Gravity: 2.69

Location: TX Tested By: SKM Test Date: 5/25/11 Sample Type: CORE

Project No.: 11-1060 Checked By: SKM Depth: 7-8.5' Elevation: N/A

Cap Mass: 0 gm

Water Content Information

Container ID
Wt. Container, gm
Wt. Container + Wet Soil, gm
Wt. Container + Dry Soil, gm
Wt. Dry Soil, gm
Water Content, %
Void Ratio
Degree of Saturation, %
Wet Unit Weight, pcf
Dry Unit Weight, pcf

145.4 110.52 110.52 31.56 0.87 97.38 118.03 89.715

UNCONFINED COMPRESSION TEST

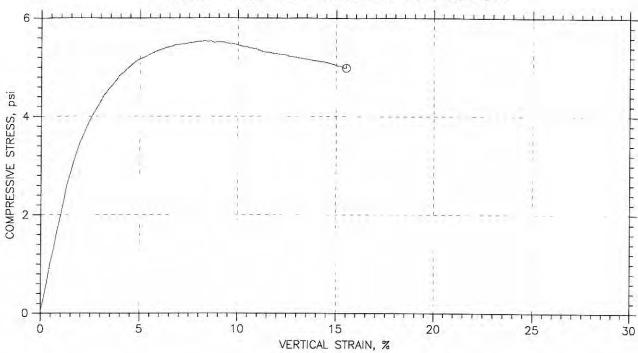
Project: PLUM CREEK SITE 6
Boring No.: F10-1411
Sample No.: 11-1060
Test No.: 1

Soil Description: HOLE 303.1 Remarks: VACCUUM SATURATED

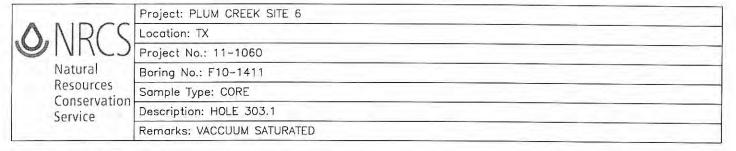
Specimen Height: 3.05 in Specimen Area: 1.54 in^2 Specimen Volume: 76.90 cc

Location: TX Tested By: SKM Test Date: 5/25/11 Sample Type: CORE

Project No.: 11-1060 Checked By: SKM Depth: 7-8.5' Elevation: N/A


Liquid Limit: ---Plastic Limit: ---Measured Specific Gravity: 2.69

Cap Mass: 0 gm


Specimen Volume: 7	6.90 cc	Meas	ured Specif	ic Gravity:	2.69	
Time min	Axial Displacement in	Axial Strain %	Load 1b	Corrected Area in^2	Corrected Vertical Stress psi	Corrected Shear Stress psi
1 0 0.17065 3 0.3334 4 0.50027 5 0.66672 6 0.83338 7 1.0002 8 1.1667 9 1.3336 10 1.5005 11 1.667 12 1.8336 13 2.0005 14 2.1669 15 2.3339 16 2.5008 17 2.6674 18 2.8341 19 3.0009 20 3.1674 21 3.3341 22 3.501 23 3.6674 24 3.8341 25 4.0008 26 4.1674 27 4.3341 28 4.501 29 4.6674 30 4.834 31 5.0009 32 5.1674 33 5.3341 35 5.334 34 5.5017 40.6686 40.65017 41 6.6686 42 6.8353 43 7.0022 44 7.1686 42 6.8353 43 7.0022 44 7.1686 45 7.3355 46 7.5027 47 7.6691 48 8.3366 52 8.5031 53 8.6696 54 8.8365 55 9.0034 48 7.8358 49 8.0027 50 8.1693 51 8.3365 52 8.5031 53 8.6696 54 8.8365 55 9.0034 65 10.67 66 10.837 67 11.004 67 10.337 68 10.504 71 11.67 72 11.837 73 12.504 74 75 12.337 76 12.504	0.0049573 0.0094049 0.014316 0.020153 0.030253 0.035257 0.039473 0.044754 0.049897 0.054947 0.059904 0.065278 0.070375 0.0751 0.080474 0.085802 0.091038 0.095485 0.10077 0.10596 0.11073 0.11587 0.12111 0.13107 0.13635 0.14636 0.15159 0.15608 0.16183 0.14636 0.15159 0.15608 0.16183 0.16734 0.17235 0.17679 0.18208 0.16734 0.19217 0.19746 0.20232 0.20695 0.21738 0.22711 0.23702 0.24763 0.25789 0.25789 0.25789 0.25789 0.25789 0.25789 0.25789 0.26283 0.26788 0.27297 0.27779 0.28312 0.28747 0.29303 0.30869 0.31337 0.31337 0.31337 0.31337 0.31337 0.32862 0.33408 0.334932 0.35989 0.36948 0.37467 0.38004	0.16237 0.46891 0.46891 0.46891 0.46891 0.46891 0.46891 0.46891 0.4659 1.6359 1.6259 1.6359 2.3059 2.3059 2.3059 2.4599 2.8104 2.9819 3.1276 3.4705 3	0.062544 0.53162 1.0007 1.5792 2.0796 2.5799 3.0959 3.0806 4.425 4.8022 5.4413 5.7071 5.95732 6.3951 6.5984 6.9896 7.4271 7.56387 7.4271 7.57398 7.9587 8.162 7.4271 7.57398 8.162 7.4271 7.57398 8.3496 8.3496 8.3496 8.3496 8.3496 8.3496 8.3496 8.7407 9.0532 9.0688 9.1157 9.1783 9.2721 9.2721 9.3034 9.319 9.32721 9.2721 9.2721 9.2721 9.272	1.5372 1.5397 1.5497 1.5444 1.5474 1.55474 1.55571 1.5601 1.5657 1.5708 1.5708 1.5778 1.5778 1.5788 1.5844 1.5886 1.58924 1.58924 1.5978 1.6003 1.6146 1.6146 1.6231 1.6231 1.6347 1.6347 1.6347 1.6463 1.6463 1.6523 1.6576 1.66666 1.6697 1.6729 1.6729 1.6754 1.6885 1.6885 1.6885 1.6885 1.6885 1.6885 1.6943 1.7004 1.7004 1.7004 1.7004 1.7004 1.7104 1.7104 1.7226 1.7227 1.7327 1.7328 1.7327 1.7327 1.7327 1.7327 1.7328 1.7327 1.7327 1.7328 1.7327 1.7327 1.7328 1.7327 1.7328 1.7327 1.7328 1.7327 1.7328 1.7327 1.7327 1.7328 1.7327 1.7328 1.7327 1.7328 1.7327 1.7328 1.7327 1.7327 1.7327 1.7328 1.7327 1.7327 1.7328 1.7327 1.7328 1.7327 1.73	2.3024 2.5904 2.8364	0.020344 0.17264 0.3245 0.67196 0.83237 0.99703 1.15127 1.2952 1.4182 1.5359 1.6431 1.9553 2.0859 2.1415 2.2023 2.2475 2.3282 2.4172 2.3282 2.4172 2.5323 2.5615 2.5615 2.6592 2.6592 2.6735 2.7625 2.77492 2.77458 2.77458 2.77458 2.77458 2.77458 2.77458 2.77458 2.77458 2.77458 2.77554 2.77554 2.77554 2.77554 2.77554 2.77554 2.77554 2.77575 2.77554 2.77575 2.77554 2.77576 2.77554 2.77576 2.77554 2.77576 2.77554 2.77576 2.77554 2.77576 2.77554 2.77576 2.77554 2.77576 2.77554 2.77576 2.77554 2.77576 2.77554 2.77576 2.77554 2.77576 2.77576 2.77576 2.77576 2.77576 2.77554 2.77576 2.77554 2.77576 2.77576 2.77576 2.77576 2.77554 2.77577 2.77576 2.77577 2.77656 2.77577 2.77656 2.77554 2.77577 2.77656 2.77577 2.77657 2.776

77 78	12.67 12.837	0.38542	12.624 12.783	9.1939 9.1939	1.7593 1.7625	5.226 5.2164	2.613 2.6082
79	13.004	0.39575	12.963	9.1939	1.7661	5.2057	2.6029
80	13.17	0.40052	13.119	9.1783	1.7693	5.1875	2.5938
81	13.337	0.40566	13.287	9.1783	1.7727	5.1775	2.5887
82	13.504	0.41076	13.454	9.1783	1.7761	5.1675	2.5838
83	13.67	0.41516	13.598	9.1783	1.7791	5.1589	2.5795
84	13.837	0.41984	13.752	9.1783	1.7823	5.1498	2.5749
85	14.001 14.168	0.42507 0.43003	13.923	9.1627	1.7858	5.1308	2.5654
86 87	14.100	0.4348	14.086 14.242	9.1783 9.1627	1.7892 1.7925	5.1298 5.1118	2.5649
88	14.502	0.43962	14.4	9.1783	1.7958	5.1111	2.5559 2.5555
89	14.668	0.44444	14.557	9.1627	1.7991	5.093	2.5465
90	14.835	0.45023	14.747	9.147	1.8031	5.073	2.5365
91	15.002	0.4557	14.926	9.1314	1.8069	5.0537	2.5268
92	15.168	0.46038	15.079	9.1001	1.8101	5.0273	2.5136
93	15.335	0.46561	15.251	9.1001	1.8138	5.0171	2.5086
94	15.502	0.47103	15.429	9.0532	1.8176	4.9808	2.4904
95	15.59	0.4733	15.503	9.0688	1.8192	4.985	2.4925

UNCONFINED COMPRESSION TEST REPORT

Sy	mbol	0	Value -	
Te	est No.	1		
	Diameter, in	1.399	I II	
	Height, in	3.053		
Initial	Water Content, %	31.56 ,		
Init	Dry Density, pcf	89.72		
	Saturation, %	97.38		
	Void Ratio	0.872		
Ur	nconfined Compressive Strength, psi	5.534		
Ur	ndrained Shear Strength, psi	2.767		
Tir	me to Failure, min	8.336		
St	rain Rate, %/min	1 ,		
Me	easured Specific Gravity	2.69		
Lic	quid Limit	944		
Ple	astic Limit	444		7
Ple	asticity Index	244		
Fa	ilure Sketch		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

SHEAR TEST DATA

12-13	CELL NO.			LOAD CH.			
UU	BURETTE NO.			STRAIN CH.		Yyyx	
✓ qu	MACHINE NO.	_3		P.P. CH	LAB. NO). 11-10	60
CUBA	AR .				11-10	060 96	
✓ VS	COMPACTED				TEST DAT	E 5/25	11)
BP	UNDISTURBED	/		Gs_2.69.			
Cell _	PSI Base_	PS	Test_	PSI B	RATE OF S	TRAIN	in 💯 /min.
	SPECIMEN D	ATA			TURE DAT		
	NICIAN SKM				ICIAN SQ		
DIAMETER	*	INITIAL	IN MACHIN			INITIAL	FINAL
TOP	IN.	1,395		WET WT. SPEC. + CAN	(GM.)		215,98
MIDDLE	IN.	1.390		DRY WT. SPEC. + CAN	(GM.)		181.65
воттом	IN.	1,397	1399	WT. MOISTURE	(GM.)		
MEAN DIAMETE		1.393		WT. CAN	(GM.)		7/1/3
HEIGHT	IN.	3.013			nitial (GM.)	0.2050500000000000000000000000000000000	7.11.0
MOIST WT.	GM.	140,07		PERCENT MOISTURE	24.74	31.56	31.06
END AREA	IN. ²	1,524		DRY UNIT WEIGHT	(GM/CC)		
VOLUME	IN. ⁹	H.592		PERCENT POROSITY	(Give GO)		
MOIST UNIT WT		116.20		THEORETICAL SAT. %			
	SOLIDATION			PERCENT SAT, @ START	r		
	NICIAN			FAILURE SKETCH			
		DATE		FAILURE SKEICH	11007		
EXTENSIOMETE		DATE:					
INITIAL READIN	X 27	TIME:			T		
HT. DEFORMA		TIME:				h	
HI. DEFUNIVA	TION IN.	/					
INITIAL BURETTI	E READING		СМ			1	
FINAL BURETTE			CM			1/20	
					1	68	
VOL. CHANGE	CC x 0.061	\	IN.3		1		
CONS. VOLUME		1	IN. ³				
CONS. HEIGHT (IN.				
	ONS. SPECIMEN		IN. 2				
CONSOLIDATED	MOIST UNIT WT.		PCF		-		
				200	5.0-		
				INITIAL DRY DENSITY		/	
				FINAL DRY DENSITY	Y=_ 89,	11	
REMARKS:	1.394		3000	1402	3051		
	95		14	1402	3051 3053 3056		
HAL	90		17	1396	3056		
ZNIHAL	90				2 4		
7	95			1402			12
	95		0,7.57/2	<	(-		22 1 9
			Checked	l by:	km Da	ite:	0/6//

Project: PLUM CREEK SITE 6

State: TX

Lab No: 11-1060 Test Specifications:

Specfic Gravity (Gs): 2.69

Shear Cell No.:

Confining Pressure: psi

Top Diameter: 1.402 inches

Middle Diameter: 1.398 inches (Either measure two middle diameters

Middle Diameter: 1.398 inches or enter in the same value)

Bottom Diameter:

Height of Specimen:

Moist Weight of Specimen:

Mean Diameter:

End Area:

1.399 inches

3.053 inches

145.40 gms.

1.399 inches

1.399 inches

Volume of Specimen: 4.693 cubic inches

Moist Unit Weight: 118.03 pcf (multiply gms/cubic inch by 3.8095 to

to achieve pcf)

Extensiometer Height Deformation: inches Initial Volume of Base Cell: ml. Final Volume of Base Cell: ml.

Is the Large Burette being Used? no (yes or no)

Calibrated Area of the Base Burette: cc

Burette Volume: cc note 1.00 ml = 1.00 cc

Burette Volume: cubic inches
Consolidated Volume: 4.693 cubic inches
Assumed Consolidated Height: inches

Assumed Height after Consolidation: 3.053 inches

Moist Weight of Specimen + Can:

Dry Weight of Specimen + Can:

Weight of Can:

Weight of Water:

Weight of Dry Specimen:

215.98 gms.

181.65 gms.

71.13 gms.

34.33 gms.

110.52 gms.

Initial Water Content: 31.56 percent Initial Dry Density: 89.71 pcf

Percent Saturated: 97.37 percent

Initial Void Ratio: 0.872

Initial Diameter: 1.399 inches Initial Height: 3.053 inches

Final Water Content:

Final Dry Density:

Percent Saturated:

31.06 percent
89.71 pcf
95.83 percent

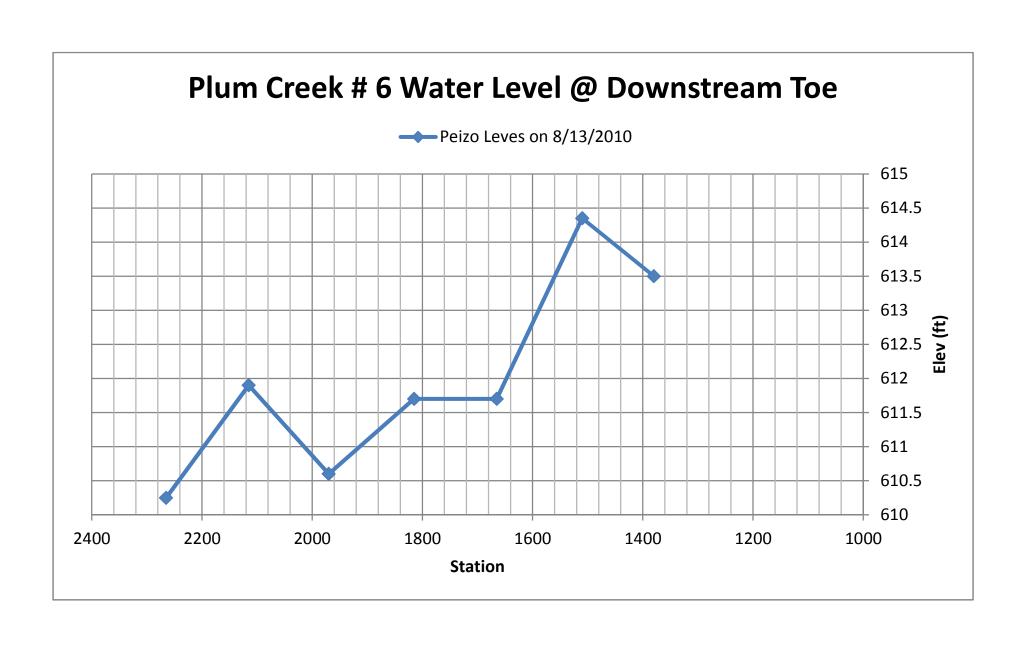
Final Void Ratio: 0.872

Final Diameter*: 1.399 inches
Final Height: 3.053 inches

*Diameter is estimated to be unchanged

Foundation Consolidation Soil Test Data, 2 sheets

Consolidation Estimate Plum Creek, Site 6 - Job No. 7420

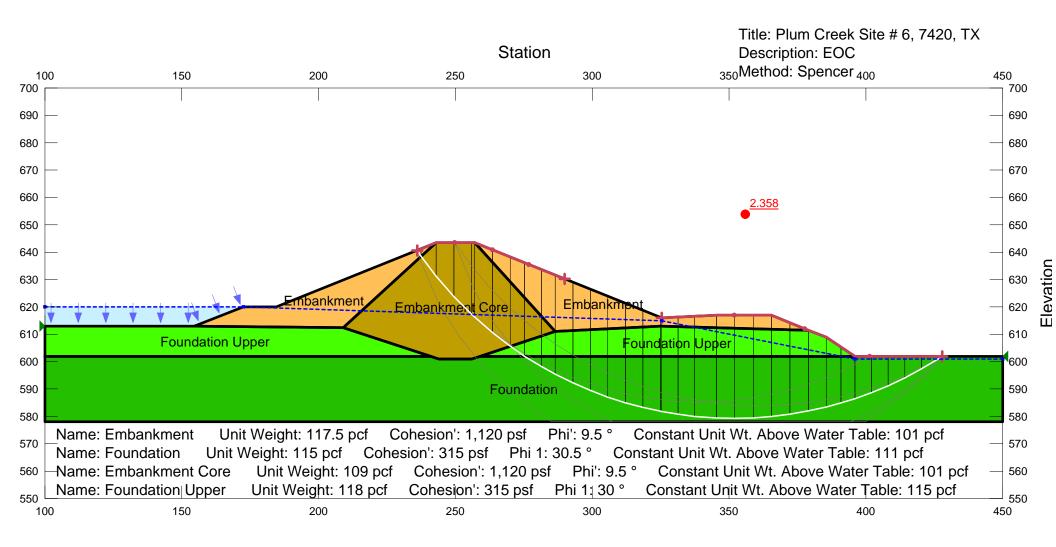

Summary of Basic Assumptions:

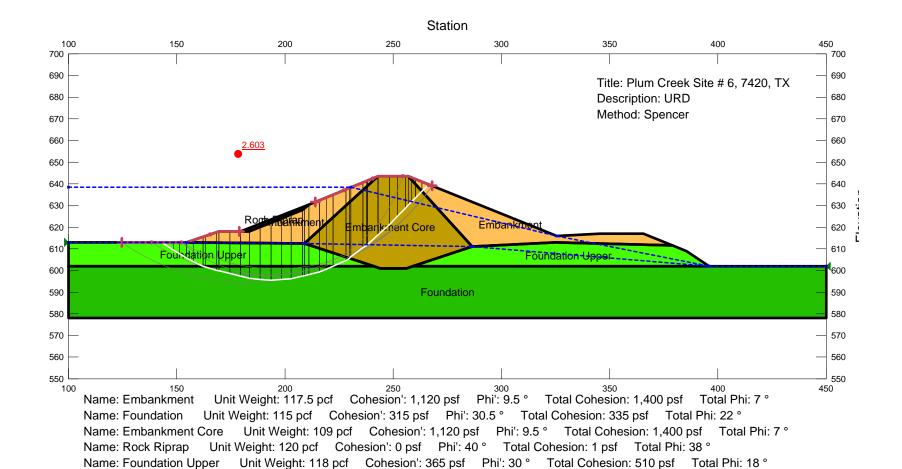
Section Analyzed	Toe near PS
Depth of Compressible Foundation, feet:	15
Height of Embankment,feet:	5
Moist Unit Weight Embankment, pcf:	115
b Value Used, feet:	

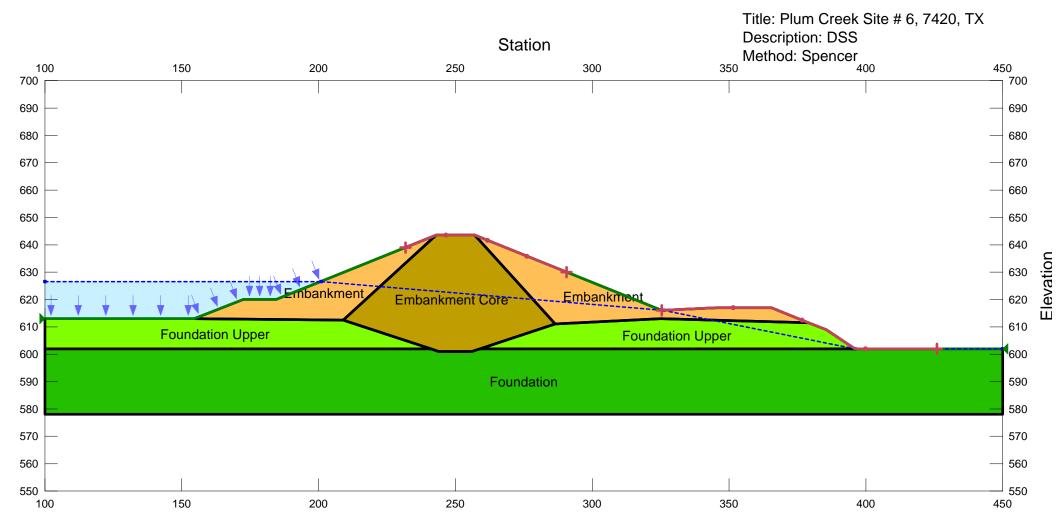
												Total
Layer	Thickness	Po	ΔΡ	Po+∆P		Сс	Cr	Pc	Rebound	Virgin	Total	Settlement
Number	feet	psf	psf	psf	e0			psf	su1	su2	Su	Feet
1	5	860	575	1,435	0.799	0.246	0.114	9,500	0.0140902	0.0000	1.41%	0.07
2	10	860	1,150	2,010	0.799	0.246	0.114	9,500	0.0233638	0.0000	2.3%	0.23
	_				-				Total Settlen	nent		0.30
					Tá	aylor E	stimate	9				
											3.0%	0.15
											4.8%	0.48
									Total			0.63

					# 200														
Site #	Sample #	Depth (ft)	USCS	0.005	0.074	LL	PI	G_s	γ d	ω	γ d	e_{o}	C_{c}	C_{r}	P_{o}	P_{c}	2K	4K	8K
5	1524	9	CH	77	100	82	51	2.78	1.58	26.3	1.55	0.799	0.246	0.114	860	9500	Sat @	4500	1.5
8	1523	4	CH	64	95	62	32	2.65	1.37	31.8	1.28	1.07	0.341	0.067	420	4000	2.8	5.6	10.4
15	2845	11	CH	62		75	49	2.75	1.33	38		1.099	0.268		1250	5000			
16	F73-159	8	CH	48	63	84	55	2.66	1.58	29.7	1.41	0.881	2.6	0.074	500	6000	0.4	1.81	4.5
20	1933	11	CH	66		87	55	2.77	1.27	40.9	1.24	1.237	0.327		1225	5000			
											·				·				

Water Elevation Data, 1 sheet

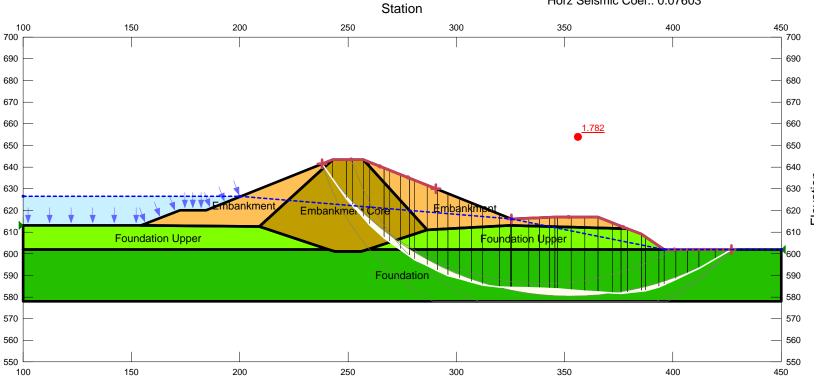

Bi-Linear Strength Parameters, 1 sheet


Non-Linear Envelope Calculation for SLOPE/W Input for Downstream Steady Seepage and Upstream Drawdown Conditions


Plum Creek, Site 6, TX - Job No. 7420

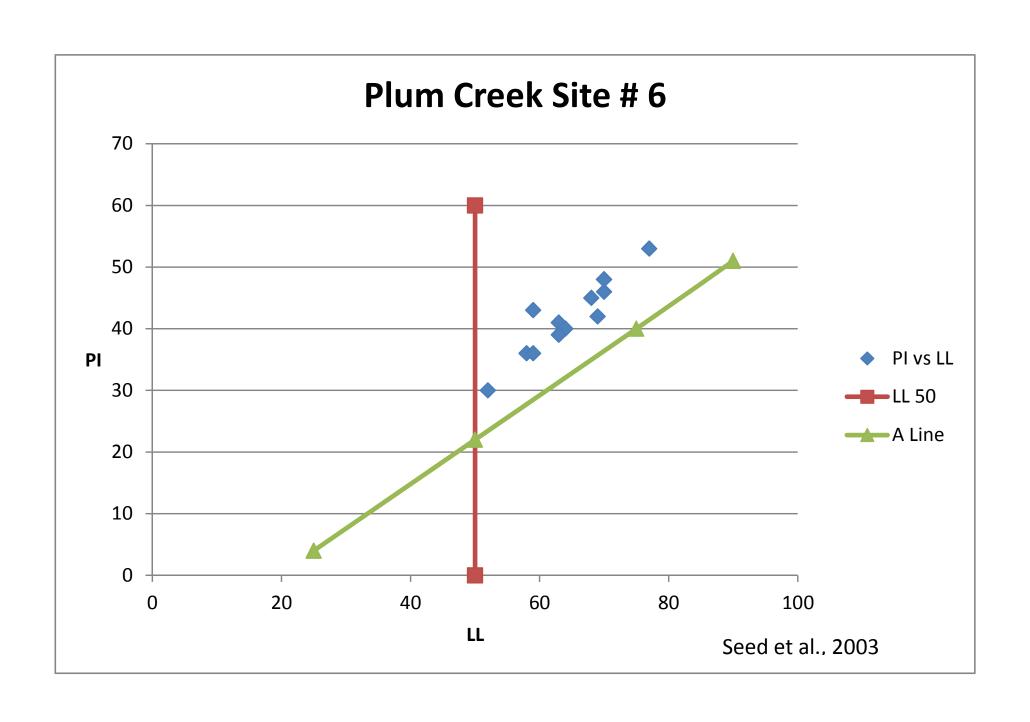
	P.S. 301	.1 (10-140)9)			P.S. 803.1	(10-1410))	
Total S	Stress φ	22	deg.		Total S	tress φ	18	deg.	
Total S	tress c	335	psf		Total St	ress c	510	psf	
Effective	Stress ø	30.5	deg.		Effective	Stress ø	30	deg.	
Effective	Stress c	315	psf		Effective	365	psf		
Composite	for US DD	FE	ERC E	invelope	Composite	for US DD	FER	C Env	elope ·
Cohesion	315	Cohesior	1	315	Cohesion	365	Cohesion		365
Phi - 1	30.5	Phi - 1		30.5	Phi - 1	30.0	Phi - 1		30.0
Phi - 2	22.0	Phi - 2		26.3	Phi - 2	18.0	Phi - 2		24.0
N @ xsct	108	N @ xsct	t	108	N @ xsct	574	N @ xsct		574
	P.S. 802.	1 (10-141	1)			Plum Wate	rshed Av	g	
Total S	P.S. 802.	1 (10-141	1) deg.		Total S		ershed Av 6.8	g deg.	
Total S	Stress φ	`			Total S Total St	tress φ			
	itress ¢	`	deg.			tress φ ress c	6.8	deg.	
Total S	itress φ tress c Stress φ	`	deg.		Total St	tress φ ress c Stress φ	6.8 1400	deg. psf deg.	
Total St Effective	tress φ tress c Stress φ Stress c	400	deg. psf deg. psf	Envelope	Total St Effective	tress φ ress c Stress φ Stress c	6.8 1400 9.5 1120	deg. psf deg. psf	/elope
Total Si Effective Effective	tress φ tress c Stress φ Stress c for US DD	400	deg. psf deg. psf	-	Total St Effective Effective	tress φ ress c Stress φ Stress c for US DD	6.8 1400 9.5 1120	deg. psf deg. psf	velope 1,120
Total Si Effective Effective Composite Cohesion Phi - 1	stress ¢ tress c Stress ¢ Stress c for US DD 0 0.0	400 FE Cohesior Phi - 1	deg. psf deg. psf	0.0	Total St Effective Effective Composite Cohesion Phi - 1	tress ¢ ress c Stress ¢ Stress c for US DD 1,120 9.5	6.8 1400 9.5 1120 FER Cohesion Phi - 1	deg. psf deg. psf	1,120 9.5
Total Si Effective Effective Composite Cohesion Phi - 1 Phi - 2	tress ¢ tress c Stress ¢ Stress c for US DD 0 0.0	FE Cohesion Phi - 1 Phi - 2	deg. psf deg. psf	0.0	Total St Effective Effective Composite Cohesion Phi - 1 Phi - 2	tress ¢ ress c Stress ¢ Stress c for US DD 1,120 9.5 6.8	6.8 1400 9.5 1120 FERG Cohesion Phi - 1 Phi - 2	deg. psf deg. psf	1,120 9.5 8.2
Total Si Effective Effective Composite Cohesion Phi - 1	tress ¢ tress c Stress ¢ Stress c for US DD 0 0.0	400 FE Cohesior Phi - 1	deg. psf deg. psf	0.0	Total St Effective Effective Composite Cohesion Phi - 1	tress ¢ ress c Stress ¢ Stress c for US DD 1,120 9.5 6.8	6.8 1400 9.5 1120 FER Cohesion Phi - 1	deg. psf deg. psf	1,120 9.5

Graphical Summaries of Slope Stability Analysis, 4 sheets


Name: Embankment Unit Weight: 117.5 pcf Cohesion': 1,120 psf Phi 1: 9.5 ° Constant Unit Wt. Above Water Table: 101 pcf Name: Foundation Unit Weight: 115 pcf Cohesion': 315 psf Phi 1: 30.5 ° Constant Unit Wt. Above Water Table: 115 pcf Phi 1: 9.5 ° Name: Embankment Core Unit Weight: 109 pcf Cohesion': 1,120 psf Constant Unit Wt. Above Water Table: 101 pcf Name: Foundation Upper Unit Weight: 118 pcf Cohesion': 365 psf Phi 1: 30.5 ° Constant Unit Wt. Above Water Table: 115 pcf

Title: Plum Creek Site # 6, 7420, TX

Description: Seismic pga


Method: Spencer

Horz Seismic Coef.: 0.07603

Name: Embankment Unit Weight: 117.5 pcf Cohesion': 1,120 psf Phi 1: 9.5 ° Constant Unit Wt. Above Water Table: 101 pcf Name: Foundation Unit Weight: 115 pcf Cohesion': 315 psf Phi 1: 30.5 ° Constant Unit Wt. Above Water Table: 111 pcf Name: Embankment Core Unit Weight: 109 pcf Cohesion': 1,120 psf Phi 1: 9.5 ° Constant Unit Wt. Above Water Table: 101 pcf Name: Foundation Upper Unit Weight: 118 pcf Cohesion': 365 psf Phi 1: 30.5 ° Constant Unit Wt. Above Water Table: 115 pcf

Seed Chart Plotting Plasticity Index versus Liquid Limit, 1 sheet

