

United States Department of Agriculture

Subject: ENG - Phase II Soil Mechanics Report

Plum Creek Site 6

National Design, Construction.

and Soil Mechanics Center

Natural

Resources

Conservation Service

501 W. Felix. Bldg. 23 Fort Worth, Texas 76115

Phone: 817.509.3204 Fax: 817.509.3209

Havs County, Texas

To: John Mueller, P.E.

State Conservation Engineer

NRCS, Temple, TX

Date: SEP 3 0 2014

File Code:

210-22

Job No:

7420

INTRODUCTION

The phase II Soil Mechanics Report is a summary of the test results from the site investigations to date. This report supplements the previous work presented in the Phase I Soil Mechanics Report, dated July 21st, 2014, and presents additional data gathered.

An additional fourteen undisturbed Shelby tube samples were submitted from the Plum Creek Site 6 embankment dam for soil mechanics testing. Nine of the undisturbed Shelby tube samples were taken from the longitudinal centerline of the existing embankment, four from the principal spillway alignment, and one from the downstream toe near the auxiliary spillway.

SOIL MECHANICS TESTING

Index Properties and Classification

Index data, classification based on the Unified Soil Classification System (USCS), dispersion data, and compaction test results are summarized in tabular form in Attachment 1. Undisturbed sample characteristics are summarized in Attachment 2 for the undisturbed samples along with photos of the extruded soil samples. Also, a borehole location map as developed by NRCS Texas Geologist, Bryan Moffatt, is in shown in Attachment 3.

Embankment

Three bore holes were advanced 56 to 60 feet deep along the longitudinal centerline of the existing embankment structure. The nine undisturbed Shelby tube samples for the embankment and foundation provided seventeen soil samples for testing (F14 – 94 (2), F14-95, F14-96, F14-97(2), F14-98, F14-99, F14-100, F14-101A(2), F14-101B, F14-101C(2), F14-102A(2), and F14-102B). There was very little variation in the classification of the soil samples tested with the vast majority classifying as fat clay (CH). The Plasticity Index varied from 24 to 49 and the Liquid Limit varied from 45 to 72. One sample classified as lean clay (CL), two samples classified as gravelly fat clay, and the remainder of the samples classified as fat clay (CH).

Principal Spillway

One bore hole was advanced 26 feet along the centerline of the proposed principal spillway pipe. Four undisturbed Shelby tube samples for the principal spillway alignment provided eight soil samples (F14-104A(2), F14-104B(2), F14-105(2), F14-106, F14-107) for testing. These soil samples also demonstrated very little variation in their classification as predominately fat clay (CH) with plasticity index variation of 28 to 46 and liquid limits from 52 to 64. Two samples classified as a fat clay with sand (CH), one as sandy fat clay (CH), and the remainder classified as fat clay (CH).

Borrow

No borrow from the embankment section where the labyrinth weir will be placed has been tested to date. This data will be needed to specify the compaction requirements including the optimum moisture content and the percentage of the maximum dry density.

Shear Strength Testing

Triaxial shear tests with pore pressure measurement data along with unconsolidated undrained shear test data of the in-place existing embankment, downstream toe, and proposed principal spillway alignment are shown below and in Attachment 4.

The selection of failure criteria that was used included both maximum stress ratio and selected points for the triaxial shear tests with pore pressure measurement. The selection of the failure criteria that was used included both less than ten percent strain and selected points for the unconsolidated undrained shear tests.

Sam	ple No.							CU	J'		Ţ	JU
Field	Lab	γd # / ft ³	W sat	USCS	LL	PI	φ deg.	c (# / ft ²)	φ' deg.	c' (# / ft ²)	φ deg.	c (# / ft ²)
1.1	14-94	102.7	22.4	СН	63	44	23	155	28	130	0	1440
2.1	14-97	103.5	21.5	СН	56	40	22.5	195	28	165	0	950
3.1	14-101A	100.9	23.3	СН	58	42	21	185	25	110	0	1140
3.1	14-102A	100.2	24.6	СН	72	49	28	325	44	0	0	1455
304.2	14-104A	106.7	20.9	СН	52	35	20	375	28	165	0	1625
304.3	14-105	98.5	26.4	СН	64	46	20	320	28	80	0	1020

ENGINEERING ANALYSIS

The structure dimensions and elevations were provided by the as-built drawings and the abstract from the Supplemental Watershed Plan for the Environmental Assessment. The data provided is summarized in the following table:

Description	Elevation	Width	Side Slope –	Side Slope –
			Upstream	Downstream
Top of Dam – Proposed	643.4	14	2.5	2.5
Auxiliary Spillway	637.8			
Normal Pool	620.0			
Lowest Gated Outlet	612.65			

Seepage

No seepage has been documented in the existing structure and is unlikely to exceed the established phreatic surface for the pool of 620 feet elevation. Fracturing in the clay stone foundation materials are more likely to convey water than seepage through the existing compacted embankment. A downstream toe drain is planned for this rehabilitation.

Gradation of the proposed drainage materials is governed by the *National Engineering Handbook (NEH) Part 633*, *Chapter 26*, *Gradation Design of Sand and Gravel Filters*. All of the soil test data indicates that the soil will be classified as Category 1 with more than 85 percent passing the # 200 sieve per this standard. Permeability testing for undisturbed samples was accomplished for soil Samples F14-101C and F14-104B and indicated higher permeability than would typically be expected for soil classified as fat clay at the in-place densities and moisture content. See Attachment 5 for the setup parameters and test data associated with these tests and the results are listed below.

Lab Sample Number	Degree of Compaction	Test w % Ref. to	Percent Sat. %	k Value cm/sec	k Value ft/day
	% Max.	Opt.			
F14- 101C	94.9	0.0	68	8.75 x 10 ⁻⁶	2.48×10^{-2}
F14- 104B	101.7	0.0	63	2.76×10^{-6}	7.82×10^{-3}

The proposed filter and drainfill foundation system along the downstream toe of the existing embankment will need to be prepared to base soil category 1 according to the *National Engineering Handbook, Part 633, Chapter 26, Gradation Design of Sand and Gravel Filters.* The fine filter material will need to be monitored closely due to the fine texture of the adjacent soils. Also, the high percentage of the clay portion of the soil will necessitate that a gradation will need to be manufactured similar to Texas Quality Products # 4 Industrial for the fine filter material and ASTM C-33 Coarse Aggregate # 89 for the coarse filter material. It is also noted that these material gradations will also necessitate some additional adjustments to meet the finer portion of the required gradations in order to meet the NEH Part 633, Chaper 26 standards.

Compaction

No Standard Proctor density test, ASTM-D698 Method A (minus #4 material), was performed on any of the soil samples tested. Currently there is no soil testing data that corroborates with the as-built drawing compaction specifications.

If you would like to discuss this report or if you need to request further testing, please contact me at (817) 509-3204.

Steven Garner, P.E. Civil Engineer

NRCS, Fort Worth, TX

Phillip Rippe, P.E. Head, Fort Worth SML NRCS, Fort Worth, TX

Attachments:

- 1. NRCS-ENG-354, Soil Mechanics Laboratory Test Data, 5 sheets
- 2. Undisturbed Sample Characteristics and Photos, 30 sheets
- 3. Borehole Location Map, 1 sheet
- 4. Shear Strength Soil Test Data, 30 sheets
- 5. Permeability Test Data, 9 sheets

cc: (electronically distributed)

John Hrebik, State Design Engineer, NRCS, Temple, TX Shawn Higgins, Design Engineer, NRCS, Temple, TX Stephen Reinsch, Co-Director, NDCSMC, NRCS, Lincoln, NE Noller Herbert, Director, CED, NRCS, Washington, DC

Attachment 1

NRCS-ENG-354, Soil Mechanics Laboratory Test Data, 5 sheets

Sheet _1__ of _3__

г																											T						Job No.	742	20			
	6/5/	14	TX	WF-07				G	Grain Si	ize Dist	ributio			Analysis is Perce		er by Dr	y Weig	ght			,	Atterb Limit		ation	%	(%)	Veigh	tion		Dispe	ersion		Moisture	e-Density			1	
	Lab. Sample	Field Sample	Plum Creek Site 6				Fin	es				5	Sand					Gra	vel .			Limii	is	assifica	Salts	oisture	I Dry Unit Weight (gm/cm³)	satura	ī.				ASTN	D698	Gs	G_{M}	% Absorp-	pH
	No.	No.	7420 Hays Co.	Depth (ft) Sample Type					#200	0 #140) #60) #40) #20	#10	#4	3/8"	1/2"	3/4"	1"	1 1/2"	3" L	L.	P.I.	ied Cla	Soluble Salts	Natural Moisture (%)	al Dry (gm/	Percent Saturation	Double Hydromet	Crum		in	Max γ _d	w ₀ %	O _S	ОМ	tion	Pii
			Location and Description		0.000 mm	2 0.00 mm	0.0 n m	0.05 m mm	0.074	4 0.105	0.25	0.42	0.84	2.0	4.76 mm	9.525 mm	12.7 mm	19.05	25.4	38.1 7	76.2 mm			Unified	S	Natı	Natural (Pe	Ì	1 Hr	4 Hr		(pcf)				<u> </u>	
F10	1399	201.1	Inside cut AS Approx. Sta. 5+00	0-2 Undist.	48	63	8	6 96	100	0												58	36	СН		16.4	1.55	61.2	5	1	1				2.65			
	1400	201.2	Inside cut AS Approx. Sta. 5+00	10-11 Undist.	54	76	9	6 99	100	0											7	70	46	СН		20.7	1.73	97.8	1	1	1				2.73			
	1401	201.3	Inside cut AS Approx. Sta. 5+00	30-35 Small	59	72	2 9	2 97	100	0											(63	41	СН	<.5	22.6			11	1	1				2.72			
_	1402	202.1	Inside cut AS Approx. Sta. 6+50	5-7 Undist.	54	68	3 9	3 100	100	0											7	70	47	СН		21.5	1.65	89.2	6	1	1				2.74			
	1403	202.2	Inside cut AS Approx. Sta. 6+50	10-11 Undist.	54	73	3 9	1 99	100	0											7	70	47	СН		22.4	1.64	92.0	5	1	1				2.73			
	1404	202.3	Inside cut AS Approx. Sta. 6+50	15-16 Undist.	35	75	5 9	6 100	100	0											(68	45	СН		21.9	1.67	94.7	5	1	1				2.72			
	1405	202.4	Inside cut AS Approx. Sta. 6+50	19-20 Small	59	73	3 9	3 98	100)											ŧ	59	36	СН	2.5	22.1			11	1	1				2.76			
	1406	202.5	Inside cut AS Approx. Sta. 6+50	20- 20.5 Undist.	36	69	8	3 94	96					100							(64	40	СН		21.3	1.65	87.9	1	1	1				2.75			
	1407	203.1	Inside cut AS Approx. Sta. 8+00	17-19 Small	62	78	3 9	4 96	97	-	-	-	-	100							(69	42	СН	<.5	22.3			13	1	1				2.72			
	1408	203.2	Inside cut AS Approx. Sta. 8+00	24-25 Small	52	73	3 9	3 98	100)											(63	39	СН	2.7	27.5			7	1	1				2.75			
	1409	301.1	Outlet Basin Left DS Approx. Sta. 15+00 CL Dam	14-16 Undist.	54	56	5 9	3 96	99					100							7	77	53	СН		28.6	1.53	99.1	7	1	1				2.74			
-	1410	803.1	D. S. Berm Approx. Sta. 15+88	7-9.5 Undist.	43	63	8 8	2 86	87					100								52	30	СН		22.9	1.62	93.8	6	1	1				2.68			
	1411	802.1	D. S. Berm Approx. Sta. 14+70	7-8.5 Undist.	47	66	5 9	92	94					100							ŧ	59	43	СН		28.0	1.51	96.4	6	1	1				2.69			

Sheet _2__ of _3__

Hays Co. Location and Decorption The latter of the latter			Г									1	1					Job N	No.	7420	ı		
F14 P4	Dispersion	(%)	%	ation %	. ~ =	-	~	. ~ =	ation %	%	(%)	Veigh	fion	tion		Dispersio	on	Mois	sture-Dens	nsity		ĺ	
F14 P4	Satura	oisture	Salts	assific	assific sill	Limits	Limits	assific	Salts	Salts	oisture	Unit V	cm³) Satura	Satura	. te				ASTM D698	Gs	G _M	% Absorp-	рН
F14 P4	S Crumb Test	ral Mc	oluble	ed Cla				ed Cli	ed Cla	oluble ral Mc	ral Mc	al Dry (gm/	(gm/	cent S	ouble	Crumb Te	ij	Max	x γ _d w ₀		Ом	tion	PIT
F14 P4	한 수 1 Hr 4 Hr	Natu	й		U iji	L.L. 1 .l.		U iji	JE N	Sc. Natu	Natr	Natura	Per	Per	T Y	1 Hr 4 H	Hr C	- (pc	cf)	, 70		İ	
94 1.1 Centerline TOD, Sta 15+40 17 Undist 17 Undist 195 1.2 Centerline TOD, Sta 45 47 Undist 196 1.3 Centerline TOD, Sta 14+40 25 56 56 Undist 197 Undist 198 1.3 Centerline TOD, Sta 14+40 25 57 37 Undist 199 2.3 Centerline TOD, Sta 14+40 27 Undist 199 2.3 Centerline TOD, Sta 13+40 22.3 23 Undist 199 2.3 Centerline TOD, Sta 13+40 22.3 23 Undist 199 2.4 Centerline TOD, Sta 13+40 22.3 23 Undist 199 2.4 Centerline TOD, Sta 13+40 22.3 23 Undist 199 2.4 Centerline TOD, Sta 13+40 22.3 23 Undist 199 2.3 Centerline TOD, Sta 13+40 22.3 23 Undist 199 2.3 Centerline TOD, Sta 13+40 22.3 24 Undist 199 2.3 Centerline TOD, Sta 13+40 22.3 24 Undist 199 2.3 Centerline TOD, Sta 13+40 22.3 24 Undist 199 2.3 Centerline TOD, Sta 13+40 22.3 24 Undist 199 2.3 Centerline TOD, Sta 13+40 22.3 24 Undist 199 2.3 Centerline TOD, Sta 13+40 22.3 24 Undist 199 2.3 Centerline TOD, Sta 13+40 22.3 24 Undist 199 2.3 Centerline TOD, Sta 13+40 22.3 24 Undist 199 2.3 Centerline TOD, Sta 13+40 22.3 24 Undist 199 2.3 Centerline TOD, Sta 13+40 22.3 Undist 199 2.3 Centerline TOD, Sta 22.3 24 Undist 199 2.3 Centerline TOD, Sta 22.3 25 25 25 25 25 25 25 25 25 25 25 25 25	82.0 22 1 1		<.5	CH <	35 CH	59 35	59 35	35 CH	CH <.5	:5 23.3				82.0	22	1 1	1			2.68			
95 1.2 Centerline TOD, Sta 45 - 47 Undext. 45 - 47 Undext. 47 Undext. 48 70 89 95 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																							
96	97.8 11 1 1		0.0	СН О	14 CH	72 44	72 44		СП ОО					07.9	11	1 1	<u>. </u>			2.70			
97 2.1 Centerline TOD, Sta 14+40 25- 27 Undist. 98 2.2 Centerline TOD, Sta 35- 37 Undist. 99 2.3 Centerline TOD, Sta 45- 47 Undist. 100 2.4 Centerline TOD, Sta 13+40 23- 55- 55.7 Undist. 101A 3.1 Centerline TOD, Sta 13+40 22.3 23- 101B 3.1 Centerline TOD, Sta 22- 23- 23- 31 Centerline TOD, Sta 22- 23- 23- 23- 24- 24- 24- 24- 24- 24- 24- 24- 24- 24	97.6	25.3	0.0	CH U.	44 CH	72 44	72 44	44 CH	CH 0.0	7.0 25.3	25.5	1.59	.59 97.0	97.0	-					2.70	<u> </u>		
96 1.3 Centerline TOD, Sta 56 Undist. 97 2.1 Centerline TOD, Sta 14+40 25 - 27 Undist. 98 2.2 Centerline TOD, Sta 35 - 37 Undist. 99 2.3 Centerline TOD, Sta 45 - 47 Undist. 100 2.4 Centerline TOD, Sta 13+40 25 - 55.7 Undist. 101A 3.1 Centerline TOD, Sta 13+40 22.3 Undist. 101B 3.1 Centerline TOD, Sta 22.7 Undist. 101C 3.1 Centerline TOD, Sta 22.7 Undist. 102																							\vdash
97 2.1 Centerline TOD, Sta 14+40 25 77 Undist. 48 70 89 95 98 100	81.8 12 1 1	5 19.7	<.5	CH <.	34 CH	62 34	62 34	34 CH	CH <.5	:.5 19.7	19.7	1.62	.62 81.8	81.8	12	1 1	1			2.66			
98		1	T		1 1	<u> </u>		1 1			<u> </u>		1		1	<u> </u>			ı				
98	96.7 21 1 1	5 21.8	<.5	CH <	31 CH	54 31	54 31	31 CH	CH <.5	21.8	21.8	1.67	.67 96.7	96.7	21	1 1	1			2.68		<u> </u>	
99 2.3 Centerline TOD, Sta 45-47 Undist. 100 2.4 Centerline TOD, Sta 13+40 22.3-23 Undist. 101B 3.1 Centerline TOD, Sta 22-22.3 Undist. 101C 3.1 Centerline TOD, Sta 22-30 Undist. 102 Centerline TOD, Sta 22-30 Undist. 103 Centerline TOD, Sta 22-30 Undist. 104 Senterline TOD, Sta 22-30 Undist. 105 Senterline TOD, Sta 22-30 Undist. 106 Senterline TOD, Sta 22-30 Undist. 107 Senterline TOD, Sta 22-30 Undist. 108 Senterline TOD, Sta 22-30 Undist. 109 Senterline TOD, Sta 22-30 Undist. 100 Senterline TOD, Sta 22-30 Undist. 101 Senterline TOD, Sta 22-30 Undist. 101 Senterline TOD, Sta 22-30 Undist. 101 Senterline TOD, Sta 22-30 Undist. 102 Senterline TOD, Sta 22-30 Undist. 103 Senterline TOD, Sta 22-30 Undist. 104 Senterline TOD, Sta 26-4 1.56 99.7 4 Undist. 105 Senterline TOD, Sta 26-4 1.56 99.7 4 Undist.			Т		1			1				_				1			1			 	
99 2.3 Centerline TOD, Sta 45- 47 Undist. 51 69 89 98 98 100	94.2 10 1 1	5 31.1	<.5	CH <.	36 CH	64 36	64 36	36 CH	CH <.5	31.1	31.1	1.40	40 94.2	94.2	10	1 1	1			2.60		I	
100 2.4 Centerline TOD, Sta 55-7 Undist. 101A 3.1 Centerline TOD, Sta 13+40 22.3 - 23 Undist. 101B 3.1 Centerline TOD, Sta 22-7 22.3 Undist. 101C 3.1 Centerline TOD, Sta 22-7 Undist. 101B 3.1 Centerline TOD, Sta 22-7 Undist. 101C 3.1 Centerline TOD, Sta 24-7 Undist. 101B 3.1 Centerline TOD, Sta 22-7 Undist. 101B 3.1 Centerline TOD, Sta 22-7 Undist. 101C 3.1 Centerline TOD, Sta 24-7 Undist. 101C 3.1 Centerline TOD, Sta 34-7 Undist. 101C 3.1 C							- 1			<u>'</u>			•		1								
100 2.4 Centerline TOD, Sta 55- 55.7 Undist. 49 67 88 95 98 100	03.6 9 1 1	21.1	0.6	CH 0.	35 CH	65 35	65 35	35 CH	CH 0.6	0.6 21.1	21.1	1.72	72 103.	103.6	9	1 1	1			2.65		ĺ	
101A 3.1 Centerline TOD, Sta 13+40 22.3 23 Undist. 49 68 87 92 94 100 57 35 CH <.5 24.5 1.60 96.1 24 101B 3.1 Centerline TOD, Sta 22 2.3 Undist. 43 67 87 93 96 100 57 34 CH <.5 22.8 18 101C 3.1 Centerline TOD, Sta 20.7 22 Undist. 49 68 87 98 100 57 34 CH <.5 23.6 1.55 86.1 19					1 1			1 1		<u> </u>		1.66	.66									 !	
101A 3.1 Centerline TOD, Sta 13+40 22.3 - 23 Undist. 49 68 87 92 94 100 57 35 CH <.5 24.5 1.60 96.1 24 CL <.5 22.8 18 19 101C 3.1 Centerline TOD, Sta 20.7 - 22 Undist. 49 68 87 98 100 57 34 CH <.5 23.6 1.55 86.1 19 101C 3.1 Centerline TOD, Sta 20.7 - 22 Undist. 41 - Undist. 41 - Undist. 42 Centerline TOD, Sta 20.7 - 22 Undist. 44 - Undist. 45 8 73 91 93 94 100 69 40 CH 3.8 26.4 1.56 99.7 4	92.3 9 1 1	5 18.9	<.5	CH <.	33 CH	61 33	61 33	33 CH	CH <.5	:.5 18.9	18.9	1.73	.73 92.3	92.3	9	1 1	1			2.68			
101A 3.1 Centerline TOD, Sta 13+40 23 Undist. 101B 3.1 Centerline TOD, Sta 22 - 22.3 Undist. 101C 3.1 Centerline TOD, Sta 20.7 - 22 Undist. 101C 3.1 Centerline TOD, Sta 49 68 87 98 100 57 34 CH < .5 23.6 1.55 86.1 19 101C 58 73 91 93 94 100 69 40 CH 3.8 26.4 1.56 99.7 4								<u> </u>													i	i	
101A 3.1 Centerline TOD, Sta 13+40 23 Undist. 101B 3.1 Centerline TOD, Sta 22 - 22.3 Undist. 101C 3.1 Centerline TOD, Sta 22.7 Undist. 23 Undist. 24 CL <.5 22.8 115 15 34 CH <.5 23.6 1.55 86.1 19 102A 23 Centerline TOD, Sta 23 Centerline TOD, Sta 241 - Undist.	96.1 24 1 1	5 24.5	<.5	CH <	35 CH	57 35	57 35	35 CH	CH <.5	:.5 24.5	24.5	1.60	.60 96.	96.1	24	1 1	1			2.70			
101B 3.1 Centerline TOD, Sta 22.3 Undist. 101C 3.1 Centerline TOD, Sta 20.7 - Undist. 49 68 87 98 100 57 34 CH <.5 23.6 1.55 86.1 19 101C 3.1 Centerline TOD, Sta 20.7 - 22 Undist. 49 68 87 98 100 69 40 CH 3.8 26.4 1.56 99.7 4																							-
101B 3.1 Centerline TOD, Sta 22.3 Undist. 101C 3.1 Centerline TOD, Sta 20.7 - Undist. 49 68 87 98 100 57 34 CH <.5 23.6 1.55 86.1 19 102A 3.2 Centerline TOD, Sta 41 - Undist. 58 73 91 93 94 100 69 40 CH 3.8 26.4 1.56 99.7 4	15 1 1	22.0	- 5	Cl	24 CI	45 24	45 24	24 CI	Cl 45	. 5 22.9	22.0				15	1 1	,			2.67			
101C 3.1 Centerline TOD, Sta 22 Undist.	13 1 1	22.0	C. 5	OL .	24 CL	43 24	45 24	24 CL	CL C.S	22.0	22.0				13	<u> </u>				2.07			
101C 3.1 Centerline TOD, Sta 22 Undist.	00.4 40 4 4	- 600		011	04 000	F7 04	F7 64	04 011	OU -	5 000	,, ,	4	FF 000	00.4	40	<u> </u>				0.00	1		\vdash
1024 3.3 Contading TOP Ste 41 - Undist 58 73 91 93 94 100 69 40 CH 3.8 26.4 1.56 99.7 4	86.1 19 1 1	23.6	<.5	CH <.	34 CH	5/ 34	5/ 34	34 CH	CH <.5	23.6	23.6	1.55	.55 86.7	86.1	19	1 1	I			2.69			
			T															-					
	99.7 4 1 1	3 26.4	3.8	CH 3.	40 CH	69 40	69 40	40 CH	CH 3.8	3.8 26.4	26.4	1.56	.56 99.7	99.7	4	1 1	1			2.66		<u> </u>	
			Т		T	<u> </u>	<u> </u>	1			ı		1		ı	<u> </u>			1				
100D 2.2 Contarling TOD Sto ··· Undiet	95.8 7 1 1	23.5	0.6	CH 0.	37 CH	62 37	62 37	37 CH	CH 0.6	23.5	23.5	1.62	.62 95.8	95.8	7	1 1	1			2.69		<u></u> _	
102B 3.2 Certientine TOD, Sta 41 Ondist.		1			, , , ,			1								1							
103 304.1 Downstream Toe, Sta 0 - 2 Undist. 48 65 77 89 91 100 56 31 CH <.5 22.8 1.57 87.6 12	87.6 12 1 1	5 22.8	<.5	CH <	31 CH	56 31	56 31	31 CH	CH <.5	22.8	22.8	1.57	.57 87.6	87.6	12	1 1	1			2.65		I	
South Stream Foc, ota 0 2 Shake	1 1 1		I		<u> </u>	<u> </u>		1 1				-L	1		1	1 1			1				

Sheet _3__ of _3__

																																	Job No.	74	20			
6/5	/14	TX	WF	- -07				Gra	ain Siz	e Distrib	M oution E	lechan xpress	ical An sed as	alysis Percen	Finer	by Dry \	Weigh	t				tterberç Limits	ification		%	(%) e	Weight	ıtion		Disp	ersion		Moisture	:-Density				
Lab. Sample No.	Field Sample No.	Plum Creek Site 6 7420	Depth (ft)	Sample			Fines					Sar	nd					Grave	el			Lillits	Class		ible Salts	ral Moisture	Dry Unit \ (gm/cm ³)	int Satura	ouble ometer	Crum	nb Test	t plou	ASTM	D698	G _S	G _M	% Absorp- tion	- pH
		Hays Co. Location and Description	Beput (it)	Туре	0.002 mm		0.02 mm		#200 0.074 mm		0.250		0.84		#4 4.76 mm	9.525	12.7	19.05 2	5.4 3	1/2" 3 8.1 76 nm m	5.2	L. P.	T. Unified		Solu	Natura	Natural I	Perce	Dou	1 Hr	4 Hr	Pin	Max γ _d (pcf)	w ₀ %				
104 A	304.2	Downstream Toe, Sta	6.0 - 6.8	Undist.	36	45	59	63	67	68	70	72	73	74	82	89	96	100			5	0 28	3 CI	1	2.6	21.0	1.71	99.2	11	1	1				2.68			
104 B	304.2	Downstream Toe, Sta	5.0 - 5.8	Undist.	48	65	80	83	84	-	-	-	-	100							5	2 29	CI	1	<.5	22.3	1.58	87.8	5	1	1				2.64			<u> </u>
105	304.3	Downstream Toe, Sta	10 - 12	Undist.	53	72	86	96	97	-	-	-	-	100							6	0 3	CI	1	1.2	28.3	1.53	100.3	4	1	1				2.69]	
106	304.4	Downstream Toe, Sta	25 -	Undist.	49	67	89	94	97	-	-	-	-	100							5	9 3	l CI	1	<.5	19.0	1.58	72.6	12	1	1				2.69			
107	900.1	Downstream Toe, Sta	26.4	Undist.	48	67	86	94	97	-	-	-	-	100							5	3 3	CI	4	<.5	14.2	1.66	61.8	13	1	1	T			2.68			
107	900.1	Downstream roe, Sta	2.5	Unuist.										<u> </u>													<u> </u>	<u> </u>				——	+					

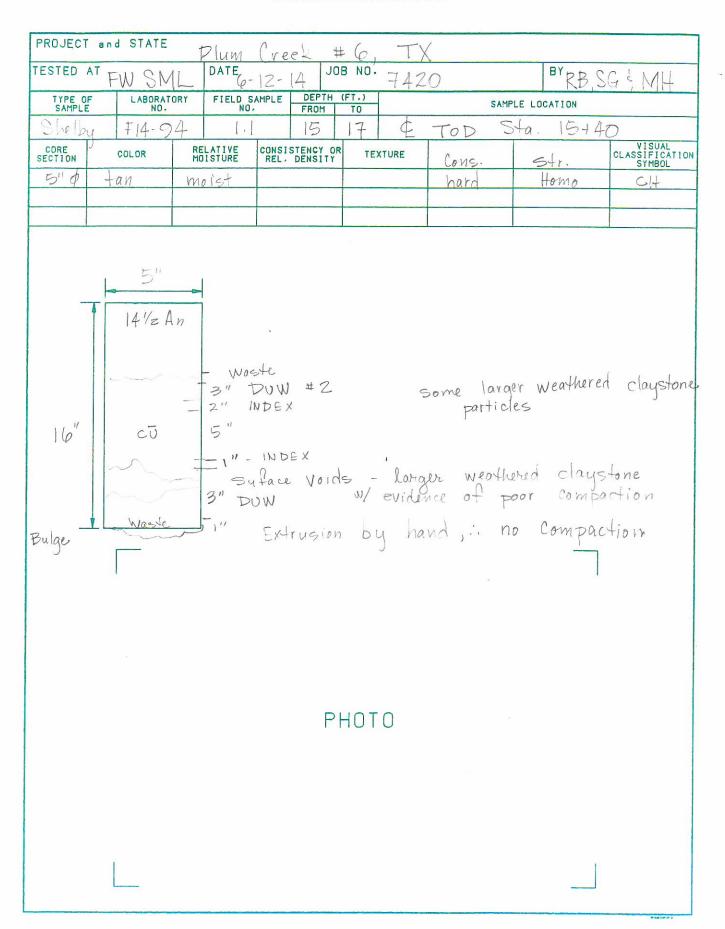
U.S. Department of Agriculture Natural Resources Conservation Service

Sheet _1__ of _3__

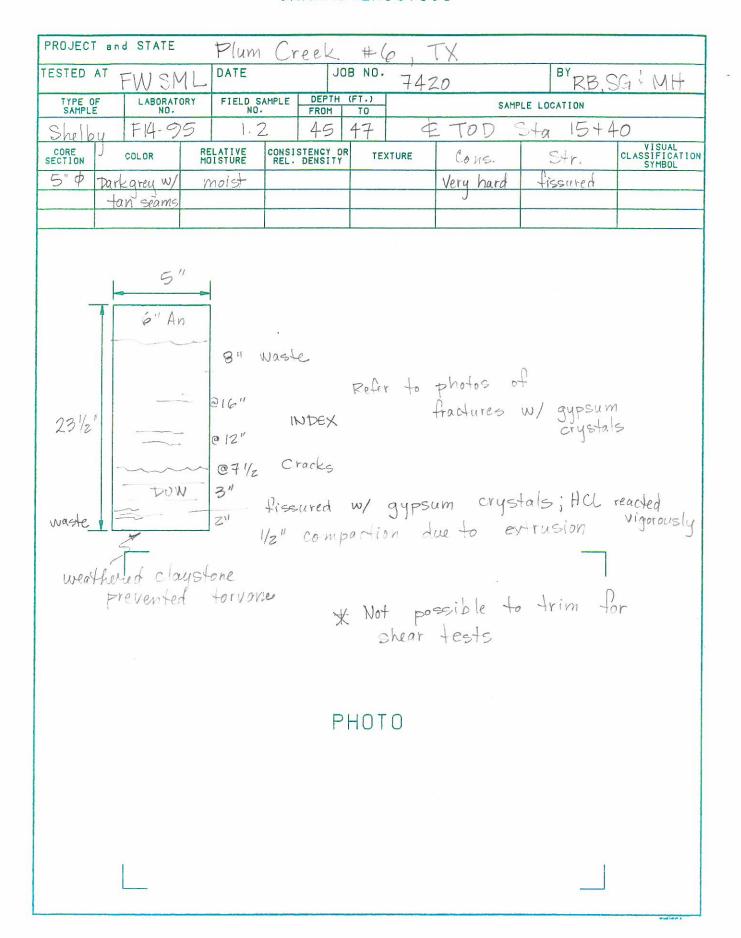
4/20/11	ļ	TEXAS (WF-07)						Gr	ain Siz	e Distr	ibution	Mecha Expre	nical <i>A</i> ssed a	Analysis s Perce	ent Fine	er by D	ry Weig	ght					rberg nits	Unified Classification	1 hr	% L	Re	sture-De elations standa	hips ard	Undis Sampl				Speci	al Tests
Lab. Sample No.	Field Number	Location and Description	Sample Type	Depth			Fines				<u> </u>	1	and T					Gra			<u> </u>	_		d Classi	Crumb - 1	Dispersion		□ Modifi Max		2/		Gs			
14-		Plum Creek Site 6 (Hays County)		ft.	0.002 mm	0.005 mm	0.02 mm	0.05 mm	#200 0.074 mm	0.105	#60 0.250 mm	#40 0.42 mm	#20 0.84 mm	#10 2.0 mm	#4 4.76 mm	3/8" 9.525 mm	1/2" 12.7 mm	3/4" 19.05 mm	1" 25.4 mm	1 1/2" 38.1 mm	3" 76.2 mm	L.L.	P.I.	Unified	Cr	Dis	Curve No.	$\begin{array}{c} \gamma_{\text{d}} \\ \text{p.c.f.} \end{array}$	w ₀ %	γ _d p.c.f.	w _N %				
1057	1.1	F14-94	Core		48	66	89	94	98					100								63	44	СН	1					102.7	22.4	2.71			o = 23.0°
		For CU'																																CU,	c = 155 psf o' = 28.0°
																														w _{Sat} =	23.9			Ċ	c' = 130 psf
																																			o = 0.0° c = 1440 psf
																																		二	
1058	2.1	F14-97	Core		47	65	87	92	94					100								56	40	СН	1					103.5	21.5	2.71	Ш	٦	o = 22.5° c = 195 psf
		For CU'																												w _{Sat} =	23.4			σο φ	b' = 28.0° c' = 165 psf
																														Sat	2011			, , , , ¢	o = 0.0°
																																			= 950 psf
1059	3.1	F14-101 A	Core		50	64	86	92	96					100								58	42	СН	1					100.9	23.3	2.72) = 21.0°
		For CU'																																CU'	c = 185 psf o' = 25.0°
																														w _{Sat} =	25.1			c	c' = 110 psf
																																		UU ¢	$0 = 0.0^{\circ}$ 0 = 1140 psf
																																		\Box	
1060	3.1	F14-101 C	Core			<u> </u>																						-		94.9	22.5	2.71	\longmapsto		eability cm
		For Permeability				<u> </u>																									00.0	\longmapsto	\vdash	k	8.7x10 ⁻⁶
		Back up to 101 A																												w _{Sat} =	28.9			\dashv	
																																		\Box	
1061	3.2	F14-102 A	Core		70	91	100															72	49	СН	1					100.2	24.6	2.73		۔ ا) = 28.0°
		For CU'																												w _{Sat} =	25.7			φ	c = 325 psf b' = 44.0°
																														vv Sat -	25.1				c' = 0 psf $c' = 0.0^{\circ}$
																																		UU °	o = 0.0° c = 1455 psf
																																\vdash		\dashv	
			+		1	+																						+				$\vdash \vdash \vdash$	┌─┤		

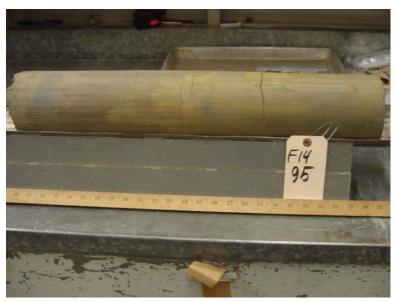
Date Reported: _____ Initials: ____

U.S. Department of Agriculture Natural Resources Conservation Service

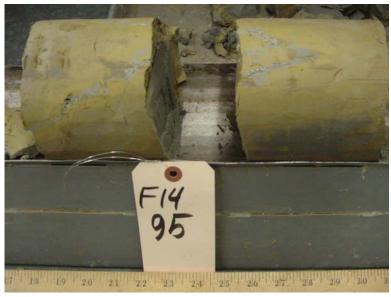

Sheet _2__ of _3__

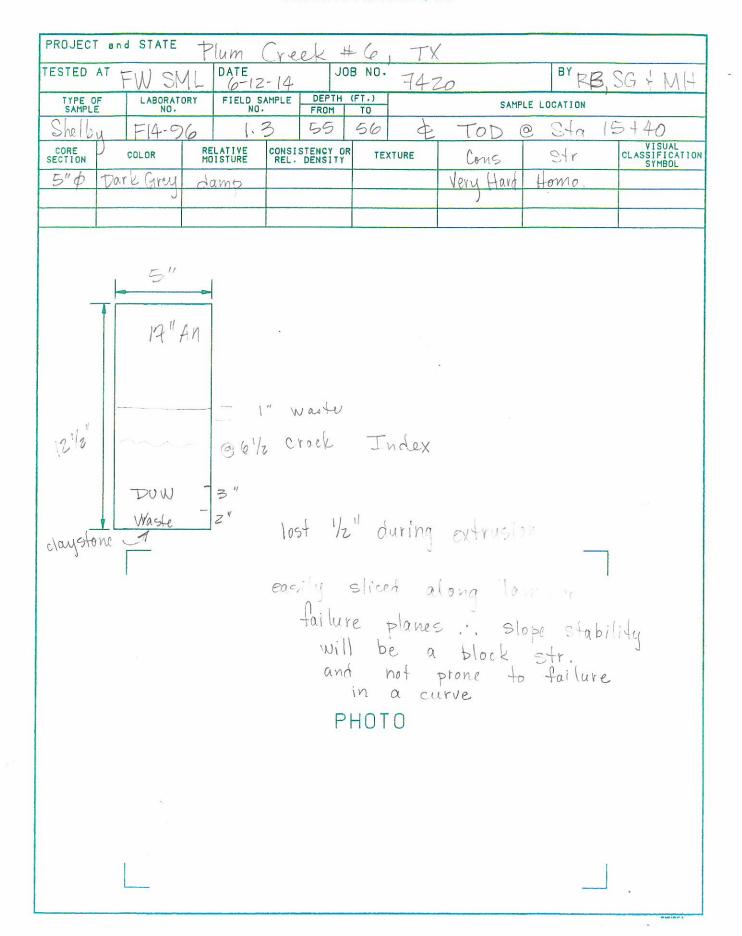
1/20/11		TEXAS (WF-07)						Gr	ain Siz	e Distr	ibutior	Mecha Expre	anical A ssed a	Analysis s Perce	s ent Fine	er by D	ry Wei	ght					rberg nits	fication	hr	% L	Re	sture-De elations Standa	nips ard	Undisi Sampl	turbed e Data			Spec	cial Tes	sts
Lab. Sample No.	Field Number	Location and Description	Sample Type	Depth			Fines	1				1	and					Gra			ı	_		Unified Classification	Crumb - 1 hr	Dispersion		Modifie Max		2/		G _S				
14-		Plum Creek Site 6 (Hays County)		ft.	0.002 mm	0.005 mm	0.02 mm	0.05 mm	#200 0.074 mm	#140 0.105 mm	#60 0.250 mm	#40 0.42 mm	#20 0.84 mm	#10 2.0 mm	#4 4.76 mm	3/8" 9.525 mm	1/2" 12.7 mm	3/4" 19.05 mm	1" 25.4 mm	1 1/2" 38.1 mm	3" 76.2 mm	L.L.	P.I.	Unifiec	Cr	Dis	Curve No.	$\begin{array}{c} \gamma_{\text{d}} \\ \text{p.c.f.} \end{array}$	w ₀ %	γ _d p.c.f.	w _N %					
1062	304	F14-104 A	Core		45	55	74	80	85					100	i e							52	35	СН	1					106.7	20.9	2.71			φ = 20	
		For CU'																																CU'	c = 37 $\phi' = 28$	75 psf 8 ∩∘
																														w _{Sat} =	21.6			ľ	c' = 10	65 psf
																																		- UU	φ = 0.0	0°
																																				625 psf
1063	304	F14-104 B	Core																											101.7	20.6	2.68		Perr	neab	ility cm/s
		For Permeability																																k		8x10 ⁻⁶
		Backup to 104 A																												w _{Sat} =	24.0					
						1																														
1064	304	F14-105	Core		52	66	84	92	97					100								64	46	СН	1					98.5	26.4	2.73			φ = 20).0°
1001		For CU'												1																00.0			1	CU'	c = 32	20 psf
																														w _{Sat} =	26.7			-l '	$\phi' = 28$ $c' = 80$	3.0° 0 psf
			1																															+ +		
																																		UU	c = 10	0° 020 psf
						<u> </u>																													\Box	
																																				_
			+		1																												 			
			+		1	1																													-	+
			+		<u> </u>	1																													-	
																																	 			_
			+		1	1																											<u> </u>			
			+		 	+						1																					<u> </u>			+
					1	1																											 	\vdash	\longrightarrow	$-\!\!\!\!+\!\!\!\!\!-$
					<u> </u>	<u> </u>						1																					<u> </u>	\vdash		
					1	1											1									1							<u> </u>	\longmapsto		
					 	 						<u> </u>		1																	<u> </u>		<u> </u>	\longmapsto		-
					<u> </u>	 								<u> </u>																	<u> </u>		<u> </u>	$\downarrow \downarrow \downarrow$		$-\!$
					1	1																											<u> </u>	$\downarrow \downarrow \downarrow$		\longrightarrow
					<u> </u>	<u> </u>						<u> </u>		<u> </u>																	<u> </u>		<u> </u>	\bigsqcup		
			Ш	<u> </u>	<u>L</u>	<u></u> _								<u>L</u>		<u> </u>					<u> </u>							<u>L</u> _				<u> </u>	<u> </u>			

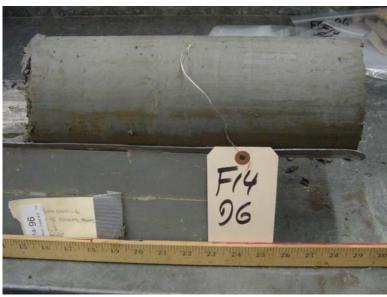

Date Reported: _____ Initials: ____

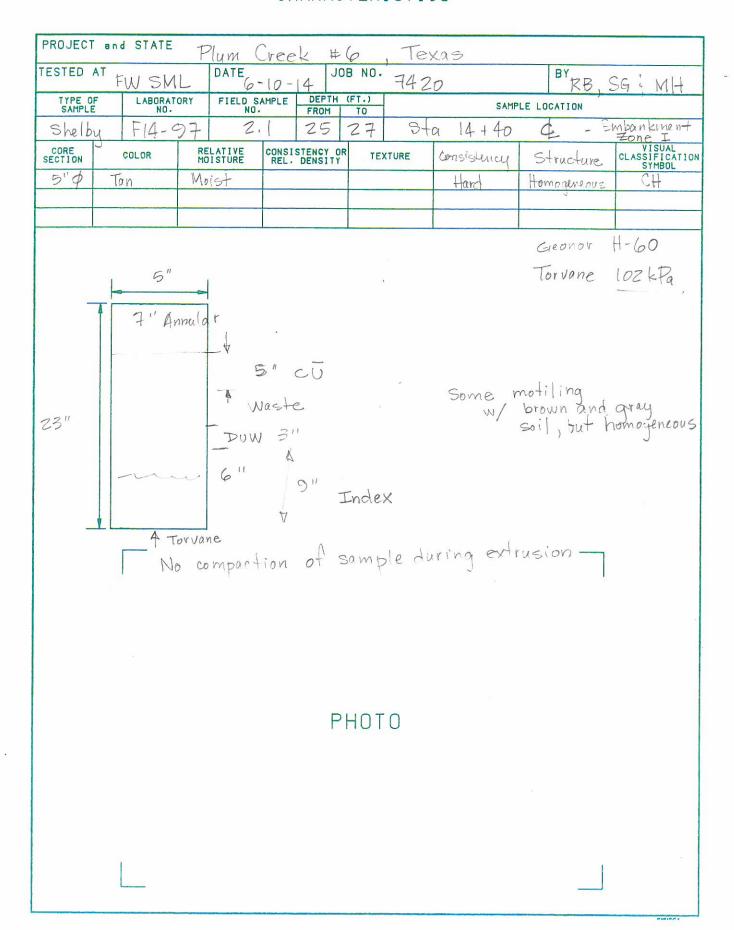

Attachment 2

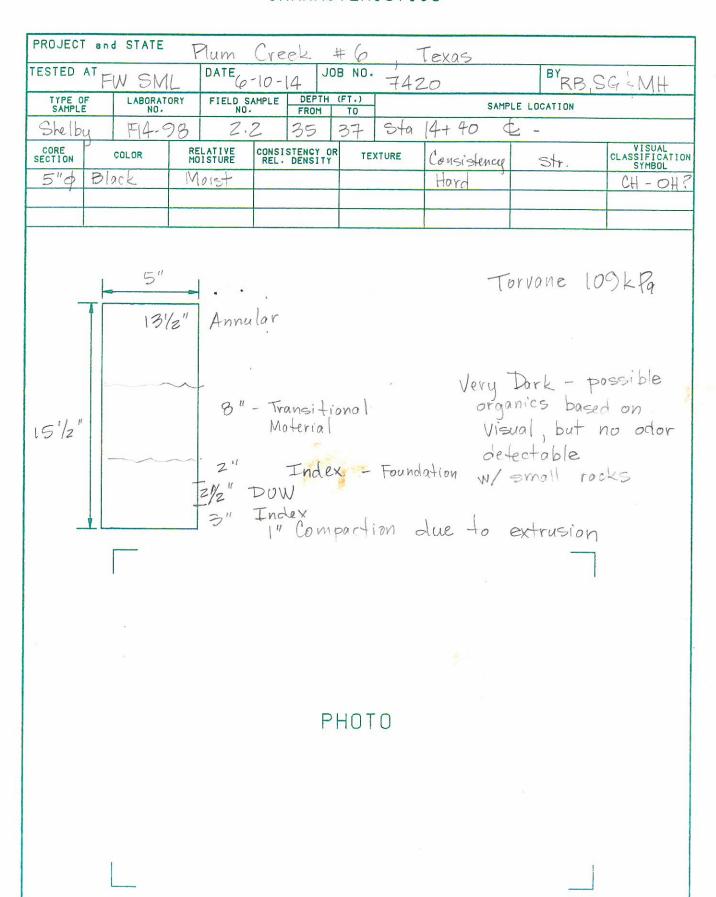
Undisturbed Sample Characteristics and Photos, 30 sheets



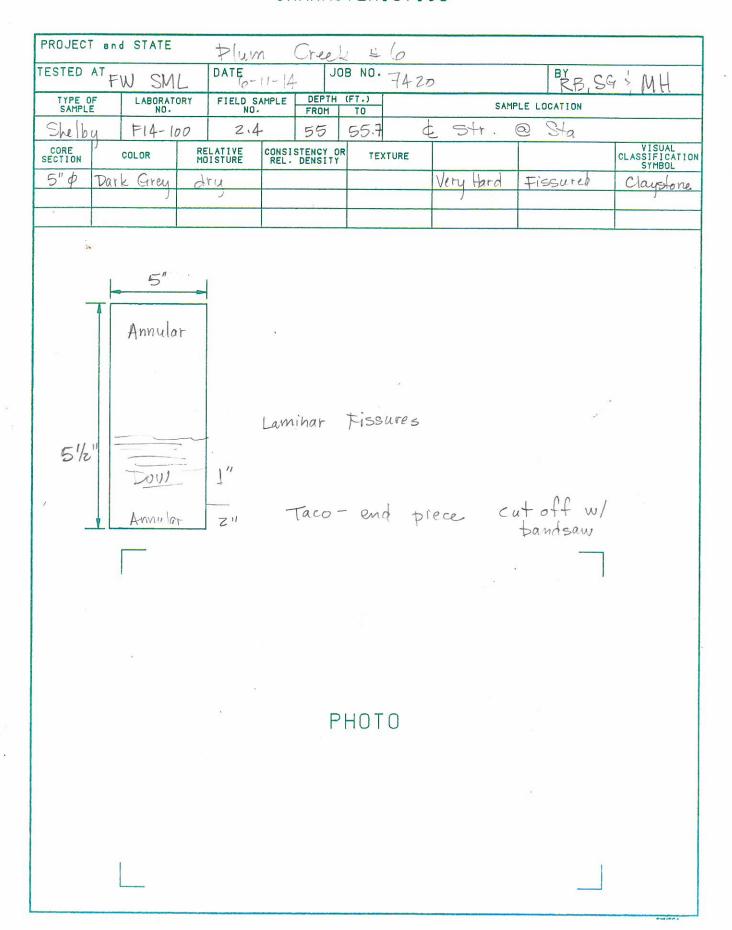






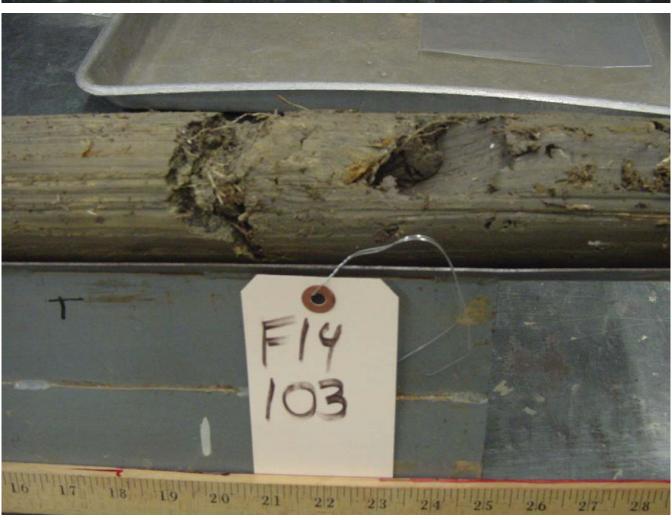


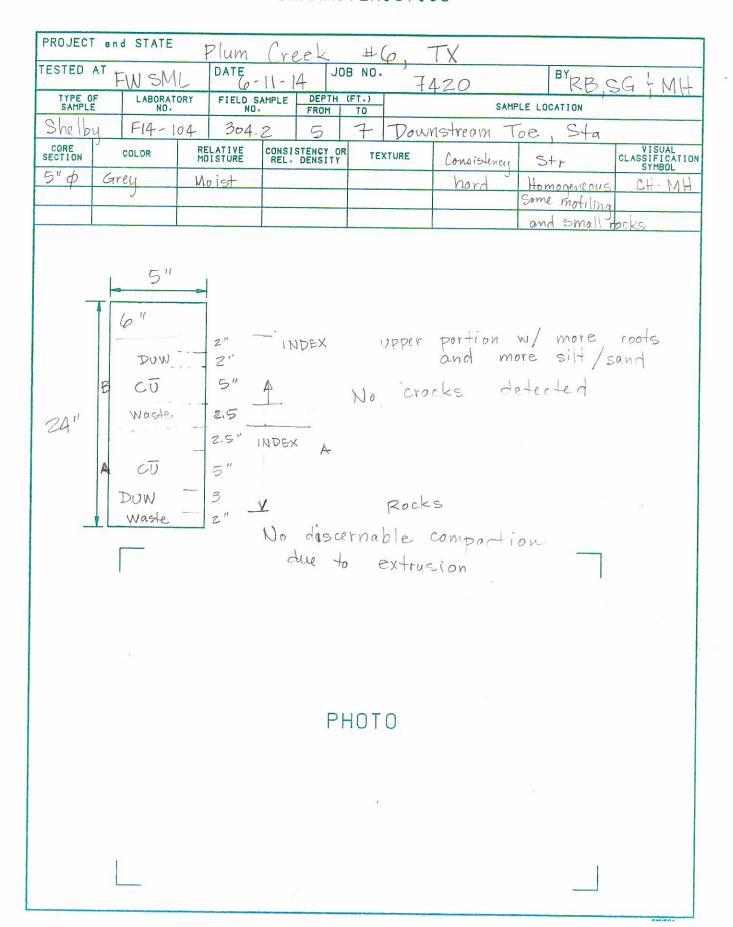
PROJECT a	nd STATE	Plum	Creek	# (0	-	Tevas		
TESTED AT	FWSML	DATE	10-14 JOE	R NO.	1	20	BY RB S	SG : MH
TYPE OF SAMPLE	LABORATORY NO.	THE RESERVE TO A PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.			1 -		PLE LOCATION	1.111
Shelby	F14-99	9 2.3	45	47 8	-fa	14+40	£ TOD	
CORE SECTION	COLOR	RELATIVE MOISTURE	CONSISTENCY OR REL. DENSITY	TEXTURE				VISUAL CLASSIFICATION SYMBOL
5"¢ G	arey 1	Moist				Very Hard		CH-
B 20" A NDEX		5" - Crac 3" - Dow 5" - T	Crystal lo compact racture p	of Gy	ps 11	sum cryst Soil ho of seam transit um at to ext	als blocky ns and is rioning to c	ding by Mardness structure claystone claystone seam - reacter vigorously W/ HCL
							e .it	
						,		



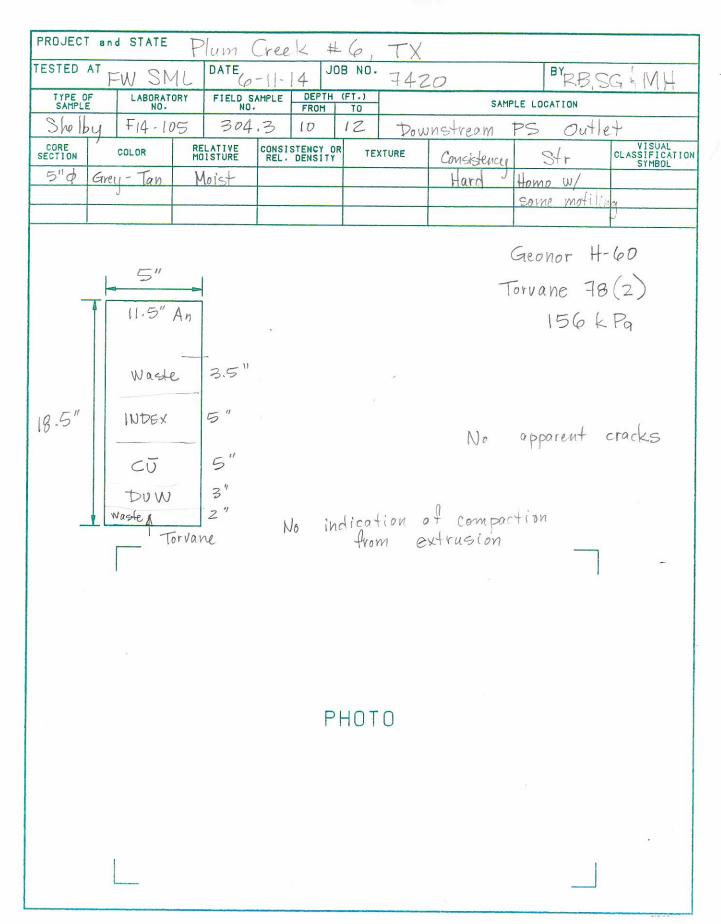
TESTED AT FW SML DATE JOB NO. 7420 TYPE OF LABORATORY FIELD SAMPLE DEPTH (FT.) Shelley F14-10 3. 20 23 & TOD @ Sta 13+40 Score Coore Color Relative Moisture Rel. Density of Texture Cons. Str CLASSIFICATION 5" Tan Moist Hard Evidence of CH INDEX 3" CO 3" CO Tan Moist STWOLL DENSITY SAMPLE DENSITY OF TEXTURE Cons. Str CLASSIFICATION Geomor H60 130 kPg + maximum of the construction of the construc	THE REAL PROPERTY AND ADDRESS OF THE PARTY O	L . ~ .	DATE		reek	# 6 B NO.		TX		BY			DV 572
Shelby F14-101 3. 20 23 & TOD @ Sta 13+40 CORE SECTION COLOR RELATIVE CONSISTENCY OR REL. DENSITY TEXTURE CONS. Str CLASSIFICAT SYMBOL 5" D Tan Moist Hard Evidence of CH 11th Construction Geomor H60 130 kPq + maxe CO 5" DOW 3" CO 5" DOW 2" Rel. DENSITY TEXTURE Cons. Str Classification Geomor H60 130 kPq + maxe Co 5" Dow 2" Co Cons. Str Classification Geomor H60 130 kPq + maxe Co F" Dow 2" Co Cons. Str Classification Geomor H60 130 kPq + maxe Co F" Dow 2" Rock Coanser material, grey Crack A CU 5" Rock The Rel. Density of Coanser material, grey	TYPE OF	THE R. P. LEWIS CO., LANSING, MICH. 499-14039-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	11 6	2-11-1	14		742				RB, S	$G, \dot{\epsilon}$	MH
CORE SECTION COLOR RELATIVE CONSISTENCY OR REL. DENSITY TEXTURE Cons. Str CLASSIFICAT SYMBOL SYMBOL TAN Moist Hard Evidence of CH lift Construction 5" An -2"- Waste Some weathered claystone particles 10 DOW -3" Some weathered claystone particles 10 DOW -3" Crack Waste 2 DOW -2" Rock A CU 5" Rock 5" An -2"- Waste Coarser material, grey Crack 1" Waste 10 DOW -5" Rock		LABURAT NO.								E LUCATI	ON		
5" Tan Moist Hard Evidence of CH I'll Construction Geomor H60 130 kPa + maxe NDEX 3" CU 5" DOW 3" Verack The Dow State The Dow State The Coarser material, grey Crack Rock A CU 5"		F14-11	-				<u>E</u>	TOD	@	Sta	13+	40	
5" Tan Moist Hard Evidence of CH I'll Construction Geomor H60 130 kPa + maxe NDEX 3" CU 5" DOW 3" Verack The Dow State The Dow State The Coarser material, grey Crack Rock A CU 5"	SECTION	COLOR	RELATIVE MOISTURE	CONSI REL.	STENCY OR DENSITY	TEX	TURE	Cons.		Str		CLASS	SIFICAT: SYMBOL
Geonor HGO 130 kPa+ maxe S"An -2"- Waste NDEX = 3" TO 5" TOW = 2" NOTE TOWN = 2" NOTE T	5"0	Tan	Moist						1	Evidence	of	(
130 kPg+ maxe 5"An -2"- Waste NDEX 3" CU 5" DUW -3" Vaste 1" Waste Crack Waste 1" Waste Crack TOW 5" Rock A CU 5"										lift co	nstructi	on	
		5" INDEX CO POW	An -2"- 5" -2" -2"	waste		oarse				130 hered	k Pa	+	maxe
	A	CU Waste _A	5"	Ro	ock	Hed	duri	ng ext	vus	ion			
	A	CU Waste _A	5"	Ro	ock	Hed	duri	ng ext	vus	ion			
	A	CU Waste _A	5"	Ro	ock	Hed	duri	ng ext	rus	ion			
PHOTO	A	CU Waste _A	5"	Ro	cck Compac			ng ext	rus	ion			
PHOTO	A	CU Waste _A	5"	Ro	cck Compac			ng ext	rus	ion			

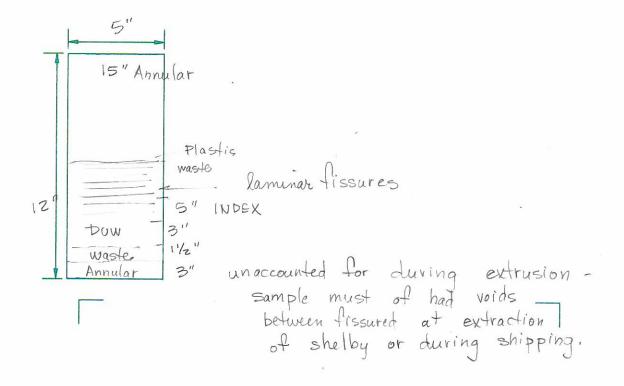
PROJECT an	d STATE	Plum (200 h	+ 6				
TESTED AT	EUI SMI	DATE		OB NO.	74	20	BYDR	SG MH
TYPE OF SAMPLE	LABORATOR NO.			(FT.) TO	170		IPLE LOCATION	SG IVIT
Shelby	F14-10			42	¢.	TOD S	fa 13+40	
CORE SECTION	COLOR	RELATIVE MOISTURE	CONSISTENCY O		XTURE			VISUAL CLASSIFICATION SYMBOL
5" \$ Tan	to Light Grey	Moist				Hard		STRIBUL
19 1/2" B	5" 6" DOW S" Annulo	5" z" @ 5" 3"	Plastic 12" Lo Gypsum Plastic	in	Void - crac Crysta	Az and Grav Possibly	due to R	e 34 KPa ock V
			P	НОТ	0			





1

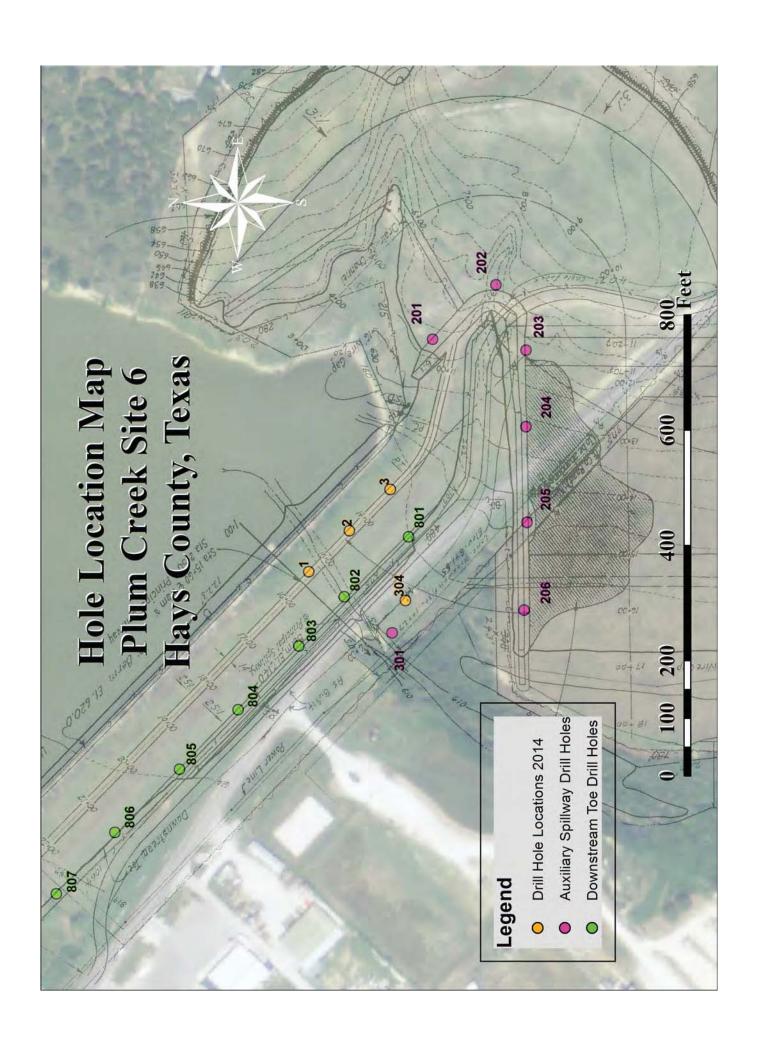

PROJECT	T and STATE	Plum	Ora	eek	# (TV		
TESTED	AT FW SM	DATE	-10-		3 NO.		20	BY DE (SG & MH
TYPE C	THE RESERVE THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER.	ORY FIELD S	AMPLE	DEPTH (FT.) TO	1-7		PLE LOCATION	SG , MIT
Shell		0 .		0	2	P.S.	outlet		
CORE SECTION	COLOR	RELATIVE MOISTURE	CONSIS	STENCY OR DENSITY	TEX	XTURE			VISUAL CLASSIFICATION SYMBOL
3"0	Grey to Black	moist					Soft		off
16"	3" 6" Ann		ganic Was		I	ndex rocks			



UNDISTURBED SAMPLE CHARACTERISTICS

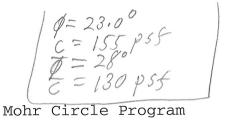
TESTED /	AT		DATE -	11- 14	Jo	B NO.	74:	20			BY	
TYPE OF		ORY	FIELD S	AMPLE	DEPTH FROM	(FT.) TO			SAMP	LE LOC	ATION	
Shelb	y F14.	06	304.	4	25	26.4	Dou	instre	am	P.S.	Outle	+
CORE SECTION	COLOR	RE MC	LATIVE DISTURE		STENCY OF DENSITY	TEX	TURE	Co	NS.	(etr.	VISUAL CLASSIFICATIO SYMBOL
5"p	Dark Grey	do	emp					Very	Hard	Fis	sured	Claystone

PHOTO


UNDISTURBED SAMPLE CHARACTERISTICS

	and STATE	Plum C	reek	#6)	Texa	NS.				
TESTED	+M 2M	L DATE	10-14	Jo	B NO.	742		В	RB, SI	GEM	H
TYPE O SAMPLE	F LABORATO	ORY FIELD S	AMPLE	ROM	(FT.) TO		SAMP	LE LOCAT			
Shelby F14-107		7 900	900.1 0 2.5		2.5	Down	nstream t	75			
CORE SECTION	COLOR	RELATIVE MOISTURE	CONSISTE REL. DE	NCY OR	TE	XTURE	Consistency	Str.		VISUA CLASSIFIC SYMBO	ATION
3"中	Tan to Black	dry					firm to soft	Strafi		CH ; O	
24"	Topsoil Fill Topsoil Fill DOW	4"	Index				cation / l w/ or	block	ey dr	ied izons	
				Ρ	НОТ	0					
						(v)					
	i										

Attachment 3


Borehole Location Map, 1 sheet

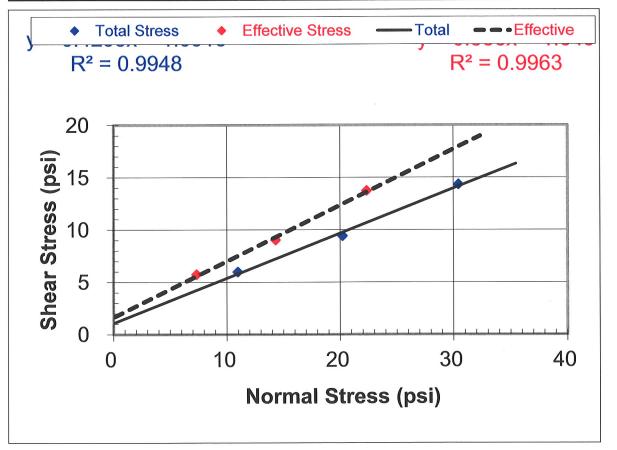
Attachment 4

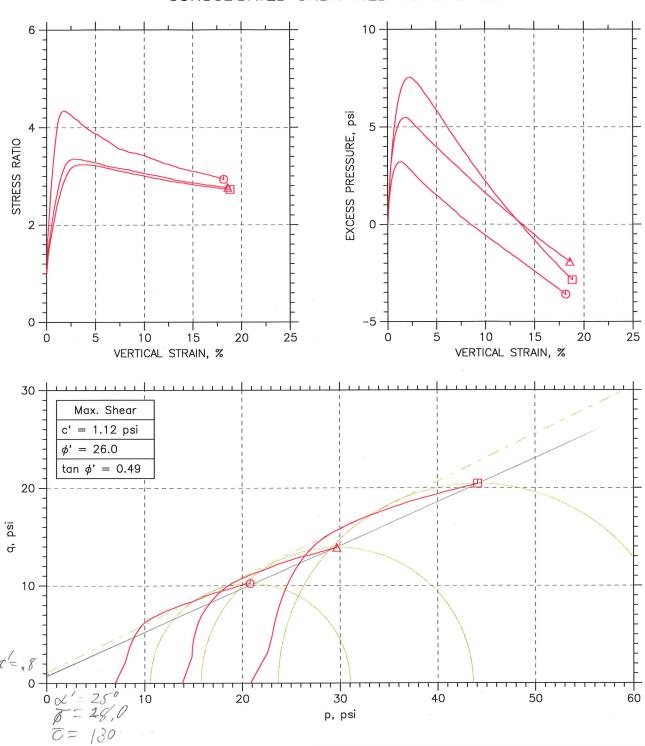
Shear Strength Soil Test Data, 30 sheets

NRCS Soil Mechanics Center Lincoln, NE

SITE NAME: Plum Creek 6

STATE: Texas SAMPLE NO: 14-1057

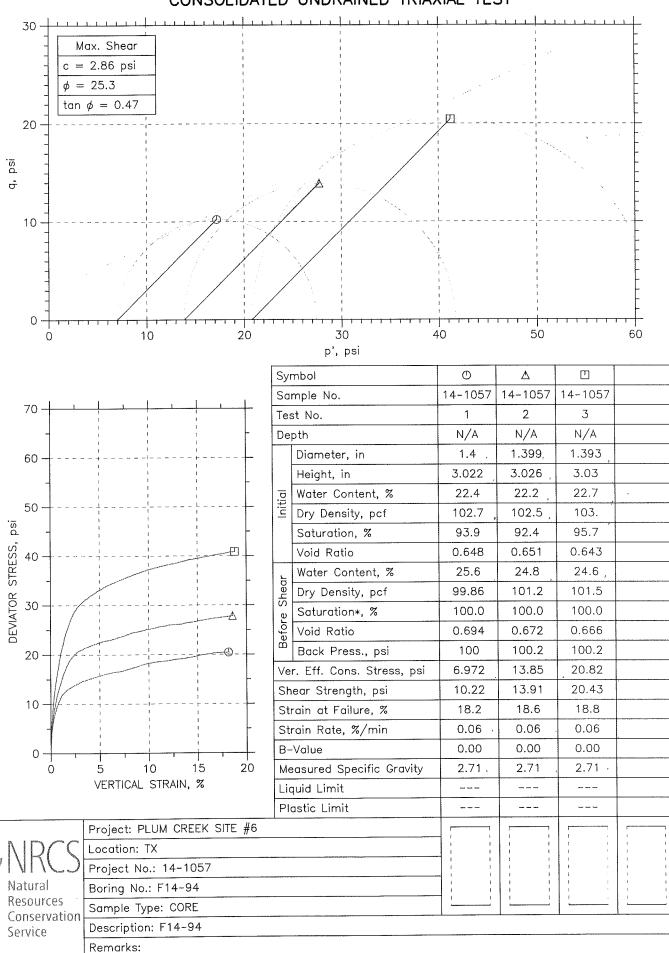

Total Strength Parameters: Zero Cohesion: Slope y= PHI: 23.2 degrees 23.2 degrees Failure Criterion: C: **157** psf 1.09 psi Effective Strength Parameters: Maximum Dev. Stress 28.2 degrees 28.2 degrees PHI': Slope y= ✓ Maximum Stress Ratio C': 1.65 psi **237** psf Max. Pore Pressure Stress path analysis for Effective: <= 15% Strain PHI': degrees Selected Points


(All inputed values in the chart are in psi)

(All inputed values	s in the chart are i	n psi,	
CELL PRESSURE	CELL PRESSURE DEVIATOR STRESS		PERCENT STRAIN
AT FAILURE		AT FAILURE	(Optional Entry)
7	7 13		1.8
14	20.5	5.1	2.7
21	31.2	6.9	3.6

c':

psf



	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	14-1057	1	N/A	SKK	8/6/14	SKK		14-1057-07eng.dat
Δ	14-1057	2	N/A	SKK	8/6/14	SKK		14-1057-14eng.dat
	14-1057	3	N/A	SKK	8/6/14	SKK		14-1057-21eng.dat

0	N	RC	S
	Nati	ural	
	Res	ources	
	Con	servat	ion
	Serv	ice	

Project: PLUM CREEK SITE #6	Location: TX	Project No.: 14-1057
Boring No.: F14-94	Sample Type: CORE	
Description: F14-94		
Remarks:		

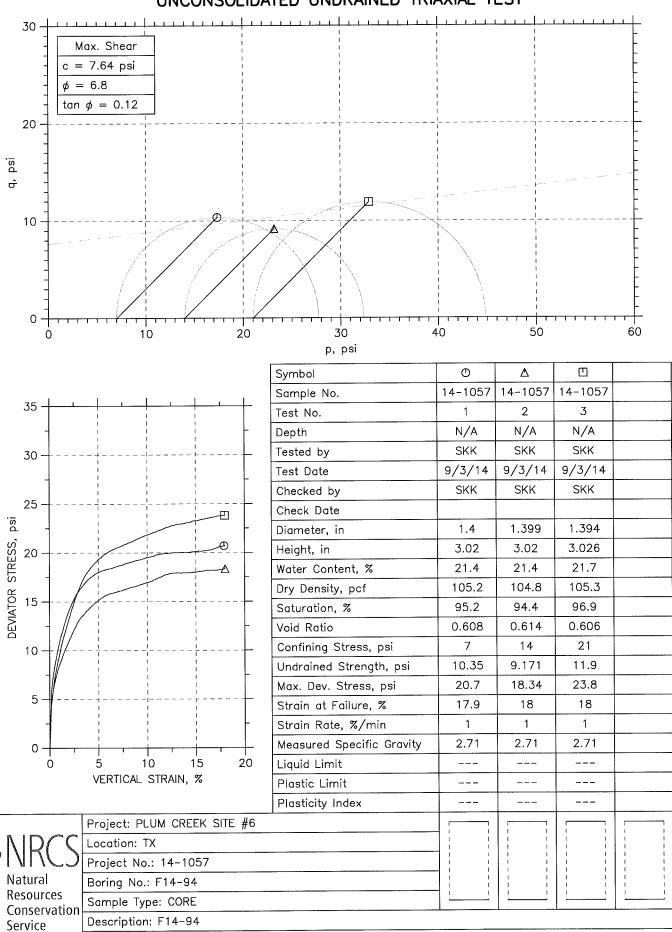
SITE NAME: Plum Creek Site #6

Texas STATE:

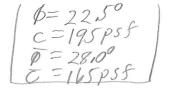
SAMPLE NO: 14-1057 UU

Total Strength Parameters: Zero Cohesion: PHI: -5.3 degrees 5.3 degrees Slope y= Failure Criterion: 1090 psf 7.57 psi Effective Strength Parameters: Maximum Dev. Stress PHI': 5.3 degrees 5.3 degrees Slope y= Maximum Stress Ratio 1090 psf 7.57 psi Max. Pore Pressure Stress path analysis for Effective: Q=0° <= 10 % Strain Alpha': 5.3 degrees ✓ Selected Points C= 1440 PSF


a':


7.54 psi

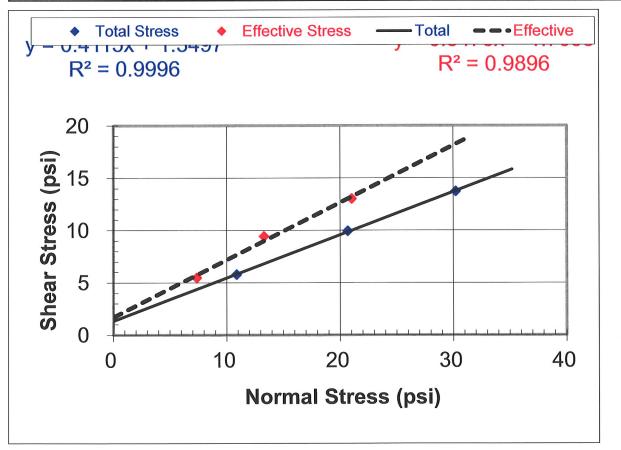
(All inputed values in the chart are in psi)

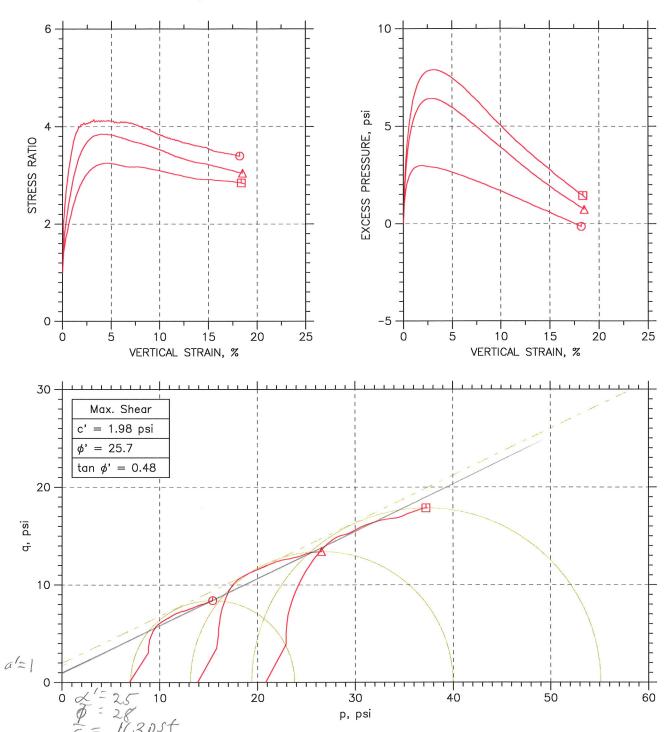

	(MII IIIpacca varacs	s in the chart are i	п рыт)	
CELL PRESSURE		DEVIATOR STRESS	PORE PRESSURE	PERCENT STRAIN
		AT FAILURE	AT FAILURE	(Optional Entry)
1	7	19.5	0.001	10.0
	14	17.0	0.001	10.0
	21	21.8	0.001	10.0

Backpressure Saturated UU - ϕ = 0°

Remarks:

Mohr Circle Program

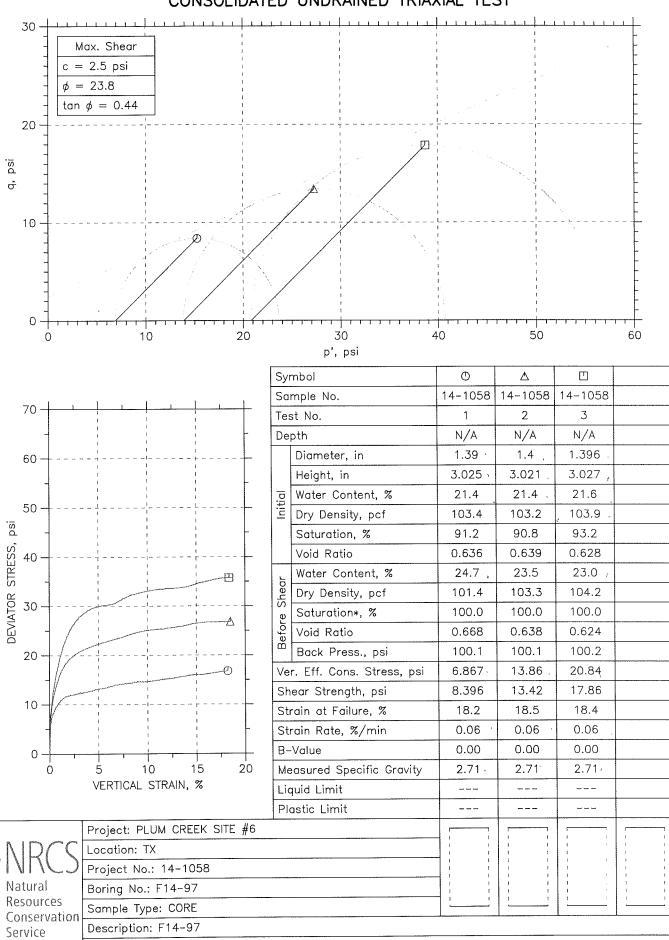

SITE NAME: Plum Creek 6


STATE: Texas
SAMPLE NO: 14-1058

Total Strength Parameters: Zero Cohesion: PHI: 22.4 degrees 22.4 degrees Slope y= C: **194** psf 1.35 psi Failure Criterion: Effective Strength Parameters: Maximum Dev. Stress PHI': 28.7 degrees 28.7 degrees Slope y= ✓ Maximum Stress Ratio C': **246** psf 1.71 psi Max. Pore Pressure Stress path analysis for Effective: <= 15% Strain PHI': 28 Selected Points psf

(All inputed values in the chart are in psi)

(All inputed value	es in the chart are i	n psi)	
CELL PRESSURE	DEVIATOR STRESS	PORE PRESSURE	PERCENT STRAIN
AT FAILURE		AT FAILURE	(Optional Entry)
7	12.5	2.9	3.2
14	14 21.5		3.9
21	29.7	7.7	4.5



	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ф	14-1058	1	N/A	SKK	8/8/14	SKK		14-1058-07eng.dat
Δ	14-1058	2	N/A	SKK	8/8/14	SKK		14-1058-14eng.dat
	14-1058	3	N/A	SKK	8/8/14	SKK		14-1058-21eng.dat

V		RC	S			
	Natural					
	Res	ources				
	Con	servat	ion			
	Serv	<i>i</i> ce				

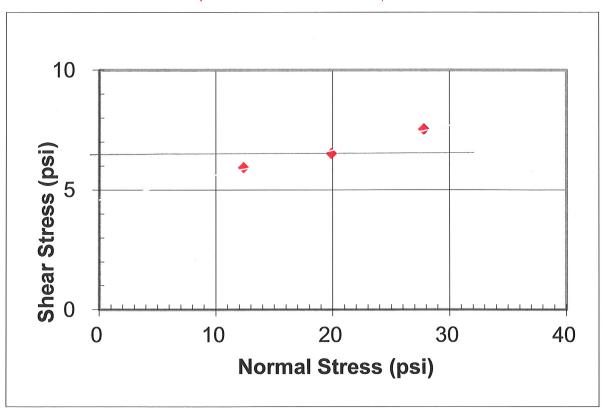
Project: PLUM CREEK SITE #6	Location: TX	Project No.: 14-1058
Boring No.: F14-97	Sample Type: CORE	
Description: F14-97		
Remarks:		

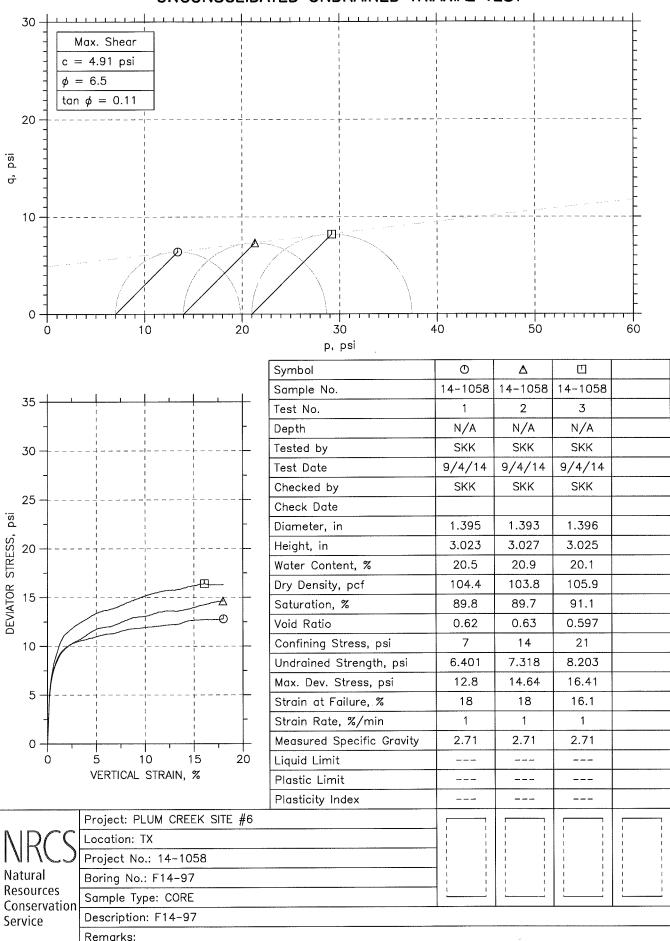
Remarks:

Mohr Circle Program

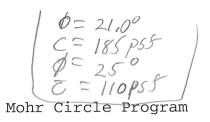
SITE NAME: Plum Creek Site #6

STATE: Texas

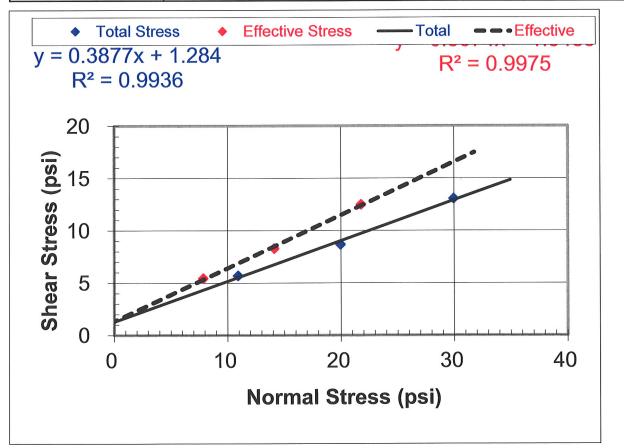

SAMPLE NO: 14-1058 UU

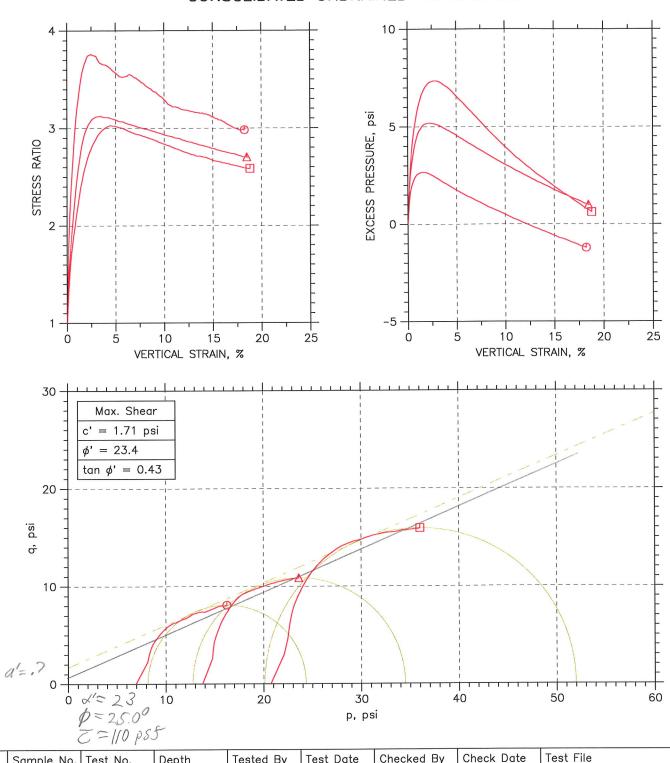

Total Strength Parameters: Zero Cohesion: PHI: 5.9 degrees 5.9 degrees Slope y= Failure Criterion: 661 psf 4.59 psi Effective Strength Parameters: Maximum Dev. Stress PHI': 5.9 degrees 5.9 degrees Slope y= Maximum Stress Ratio **661** psf 4.59 psi Max. Pore Pressure Stress path analysis for Effective: ✓ <= 10 % Strain
</p> \$ = 0° Alpha': 5.9 degrees Selected Points C= 950 PSF a': 4.57 psi

(All inputed values in the chart are in psi)


(HII IMPACCA VALACE IN CITE CHAIC ALC IN PRI)					
	CELL PRESSURE	DEVIATOR STRESS	PORE PRESSURE	PERCENT STRAIN	
		AT FAILURE	AT FAILURE	(Optional Entry)	
7		11.9	0.001	10.0	
-	14	13.1	0.001	10.0	
	21	15.2	0.001	10.0	

NRCS Soil Mechanics Center Lincoln, NE

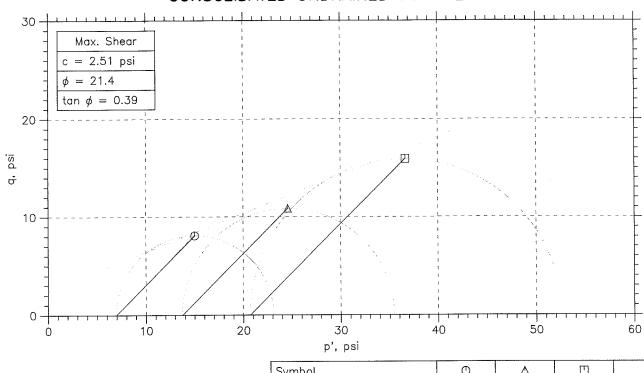

SITE NAME: Plum Creek 6


STATE: Texas
SAMPLE NO: 14-1059

Total Strength Parameters: Zero Cohesion: PHI: 21.2 degrees 21.2 degrees Slope y= **185** psf 1.28 psi C: Failure Criterion: Effective Strength Parameters: Maximum Dev. Stress PHI': 26.9 degrees 26.9 degrees Slope y= ✓ Maximum Stress Ratio 1.35 psi C': **194** psf Max. Pore Pressure Stress path analysis for Effective: <= 15% Strain PHI': 25 degrees Selected Points 110 c': psf

(All inputed values in the chart are in psi)

(All impaced values in the chart are in psi)				
CELL PRESSURE	DEVIATOR STRESS	PORE PRESSURE	PERCENT STRAIN	
	AT FAILURE	AT FAILURE	(Optional Entry)	
7	12.2	2.5	2.4	
14	18.6	5	3.4	
21	28	6.9	4.4	



	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	14-1059	1	N/A	SKK	8/12/14	SKK		14-1059-07eng.dat
Δ	14-1059	2	N/A	SKK	8/12/14	SKK		14-1059-14eng.dat
	14-1059	3	N/A	SKK	8/12/14	SKK		14-1059-21eng.dat

0	NRCS
	Natural
	Resources
	Conservation
	Service

	Project: PLUM CREEK SITE #6 DAI	/Location: TX	Project No.: 14-1059
	Boring No.: F14-101A	Sample Type: CORE	
n	Description: F14-101A		
n	Remarks:		

35	1 1	1	
30			
25	- 1		
DEVIATOR STRESS, psi			
DEVIATOR 12	- +		
10	- 1	1	
5			
0		0 15 STRAIN, %	20

Sy	mbol	U	Δ	<u> </u>	
Sa	mple No.	14-1059	14-1059	14-1059	
Те	st No.	1	2	3	
De	pth	N/A	N/A	N/A	
	Diameter, in	1.398	1.397 .	1.394	
	Height, in	3.027	3.03	3.024 ,	
Initial	Water Content, %	22.9 ,	23.7	23.4 ,	
Ē	Dry Density, pcf	101.3 .	100.4	101	
	Saturation, %	92.3	93.1	93.6	
	Void Ratio	0.676	0.691	0.681	
_	Water Content, %	26.4 ·	26.1 ,	25.1	
Shear	Dry Density, pcf	98.77	99.24	100.9	
1	Saturation*, %	100.0	100.0	100.0	
Before	Void Ratio	0.719	0.711	0.683	
a a	Back Press., psi	100.1	100.3	100.3	
Ve	er. Eff. Cons. Stress, psi	6.94 -	13.74 ⁻	20.72	
Sł	near Strength, psi	8.083	10.86	15.92	
St	rain at Failure, %	18.2	18.5	18.8	
St	rain Rate, %/min	0.06 ,	0.06	0.06	
В	-Value	0.00	0.00	0.00	
М	easured Specific Gravity	2.72	2.72 -	2.72 ·	
Li	quid Limit				
PI	astic Limit				

Natural
Resources
Conservation
Service

Project: PLUM CREEK SITE #6 DAM Location: TX

Project No.: 14-1059

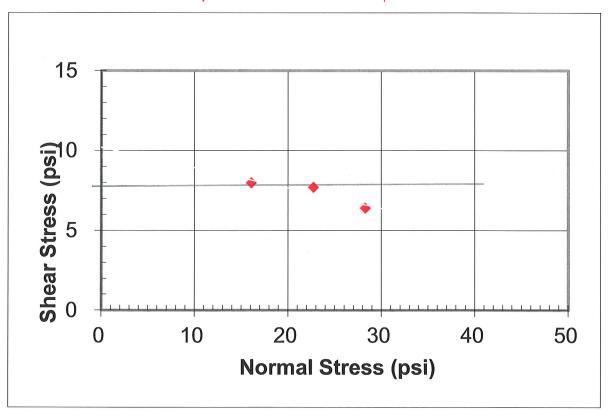
Boring No.: F14-101A Sample Type: CORE

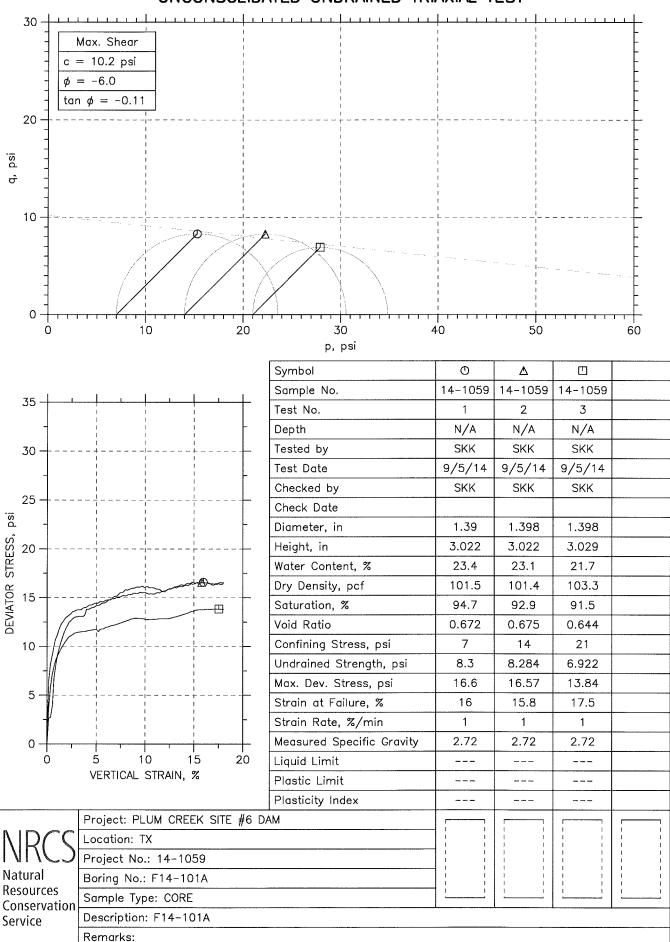
Description: F14-101A

Remarks:

SITE NAME: Plum Creek Site #6

STATE: Texas


SAMPLE NO: 14-1059 UU


Total Strength Parameters: Zero Cohesion: PHI: -7.3 degrees -7.3 degrees Slope y= Failure Criterion: 1469 psf 10.20 psi Effective Strength Parameters: Maximum Dev. Stress PHI': 7.3 degrees -7.3 degrees Slope y= Maximum Stress Ratio **1469** psf 10.20 psi Max. Pore Pressure Stress path analysis for Effective: <= 10 % Strain \$=00 Alpha': -7.2 degrees ☐ Selected Points C= 1138 post 10.12 psi a':

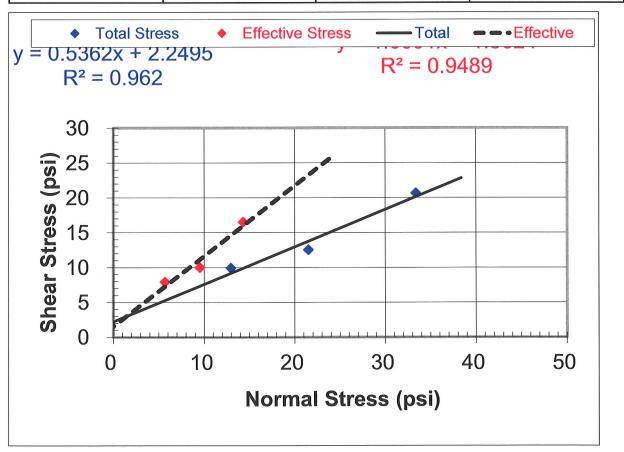
(All inputed values in the chart are in psi)

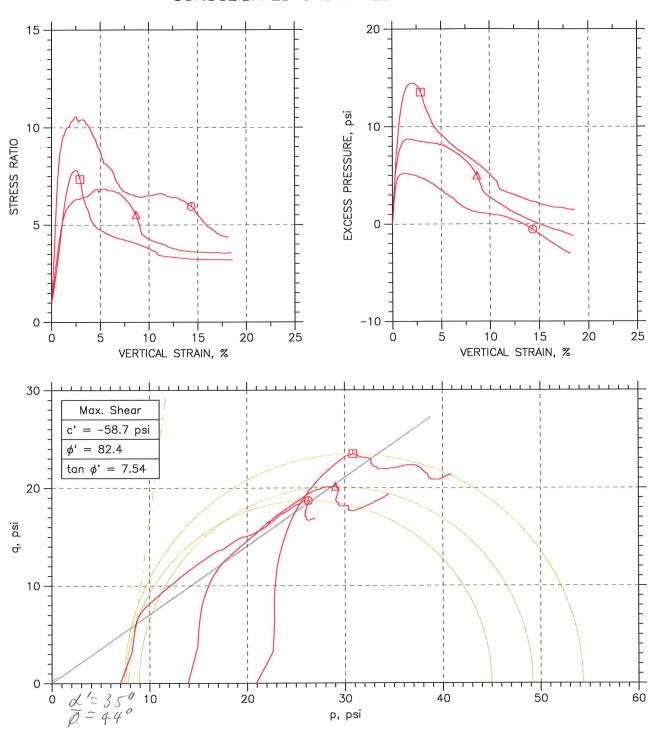
CELL PRESSURE	DEVIATOR STRESS	PORE PRESSURE	PERCENT STRAIN
	AT FAILURE	AT FAILURE	(Optional Entry)
7	16.1	0.001	10.0
14	15.5	0.001	10.0
21	12.9	0.001	10.0

psf

Mohr Circle Program

SITE NAME: Plum Creek 6

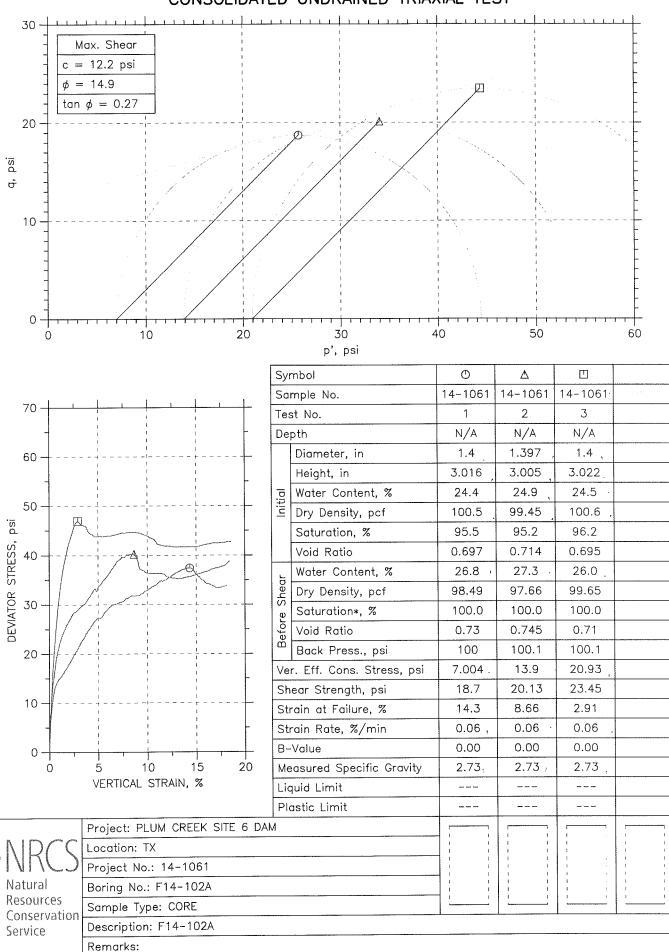

STATE: Texas
SAMPLE NO: 14-1061


Total Strength Parameters: Zero Cohesion: PHI: 28.2 degrees Slope y= 28.2 degrees C: 324 psf 2.25 psi Failure Criterion: Effective Strength Parameters: Maximum Dev. Stress 45.3 degrees 45.3 degrees PHI': Slope y= Maximum Stress Ratio C': 1.56 psi 225 psf Max. Pore Pressure Stress path analysis for Effective: <= 15% Strain 44 PHI': degrees ✓ Selected Points

(All inputed values in the chart are in psi)

(All inputed values in the chart are in psi)				
CELL PRESSURE	DEVIATOR STRESS	PORE PRESSURE	PERCENT STRAIN	
	AT FAILURE	AT FAILURE	(Optional Entry)	
7	22.5	4.6	3.3	
14	28.4	8.6	2.5	
21	46.9	13.5	2.9	

c':



	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
Ф	14-1061	1	N/A	SKK	8/14/14	SKK		14-1061-07eng.dat
Δ	14-1061	2	N/A	SKK	8/14/14	SKK		14-1061-14eng.dat
	14-1061	3	N/A	SKK	8/14/14	SKK		14-1061-21eng.dat

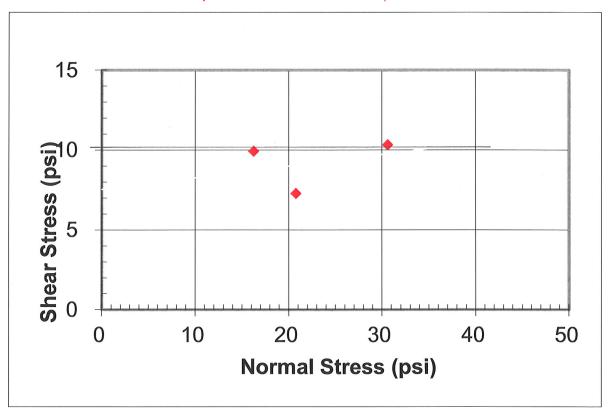
_/	1.1	RC	j
6		111	J
	Nat	ural	
	Res	ource	S
	Con	serva	tion
1	Con	iico	

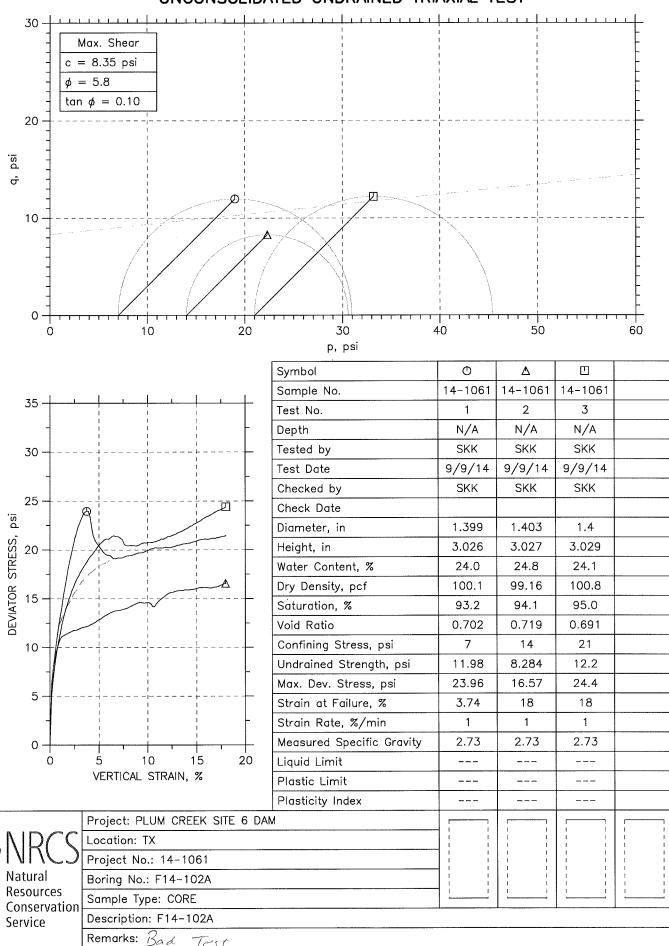
)	Project: PLUM CREEK SITE 6 DAM	Location: TX	Project No.: 14-1061				
	Boring No.: F14-102A	Sample Type: CORE					
า	Description: F14-102A						
•	Remarks:						

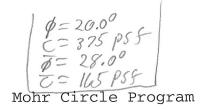
Mohr Circle Program

SITE NAME: Plum Creek Site #6

STATE: Texas

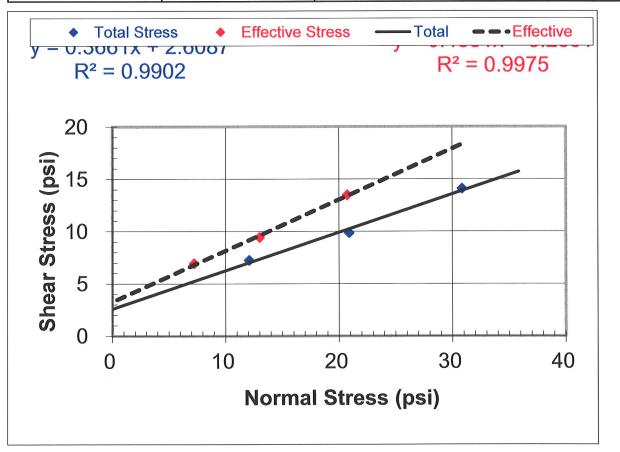

SAMPLE NO: 14-1061 UU

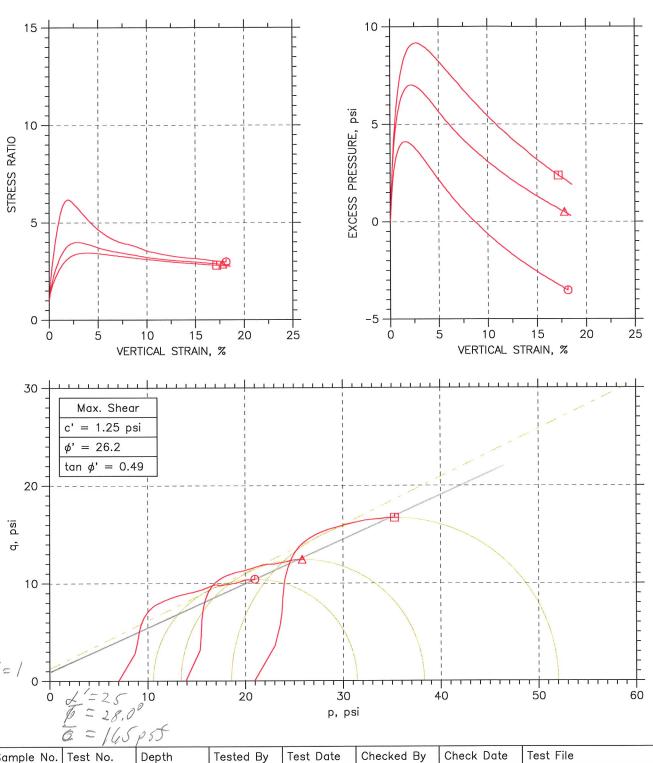

Total Strength Parameters: Zero Cohesion: 4.2 degrees PHI: 4.2 degrees Slope y= Failure Criterion: 1085 psf 7.53 psi Effective Strength Parameters: Maximum Dev. Stress PHI': 4.2 degrees 4.2 degrees Slope y= Maximum Stress Ratio C': 1085 psf 7.53 psi Max. Pore Pressure Stress path analysis for Effective: ✓ <= 10 % Strain
</p> \$=0° Alpha': 4.2 degrees Selected Points C = 1454 psf 7.51 psi


(All inputed values in the chart are in psi)

(IIII III) GOOG VGI GOO III OIIO OIIGI O GIO III POI,				
CELL PRESSURE	DEVIATOR STRESS	PORE PRESSURE	PERCENT STRAIN	
	AT FAILURE	AT FAILURE	(Optional Entry)	
7	19.9	0.001	10.0	
14	14.6	0.001	10.0	
21	20.7	0.001	10.0	

Backpressure Saturated UU - ϕ = 0°

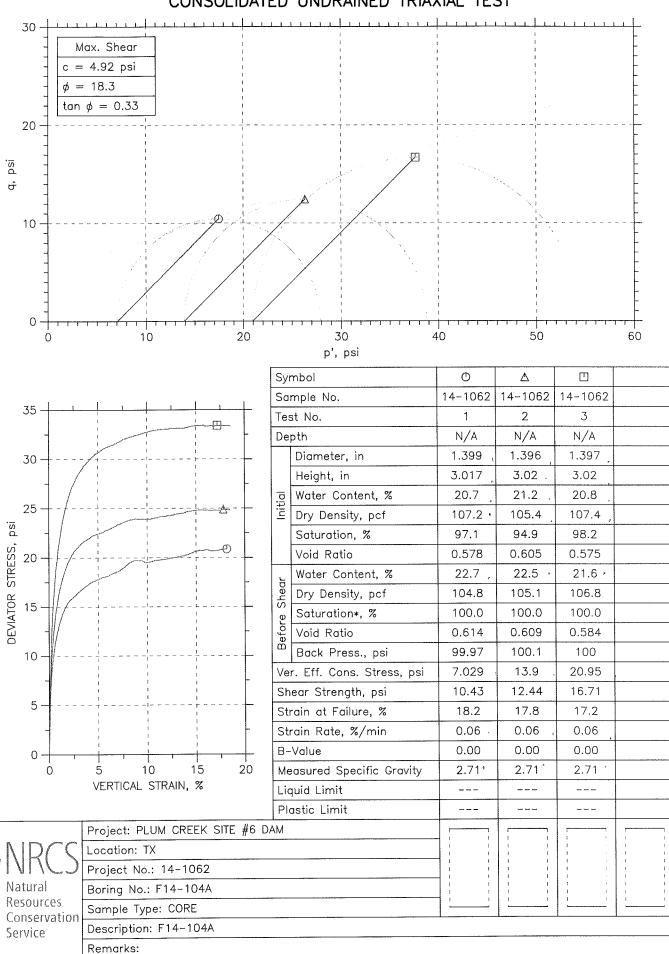

SITE NAME: Plum Creek 6


STATE: Texas
SAMPLE NO: 14-1062

Total Strength Parameters: Zero Cohesion: PHI: 20.1 degrees 20.1 degrees Slope y= C: **376** psf 2.61 psi Failure Criterion: Effective Strength Parameters: Maximum Dev. Stress PHI': 26.0 degrees 26.0 degrees Slope y= ✓ Maximum Stress Ratio C': 3.29 psi **473** psf Max. Pore Pressure Stress path analysis for Effective: <= 15% Strain PHI': 28.0 degrees Selected Points c': 165 psf

(All inputed values in the chart are in psi)

_	(All imputed values in the chart are in psi)					
I	CELL PRESSURE	DEVIATOR STRESS	PORE PRESSURE	PERCENT STRAIN		
		AT FAILURE	AT FAILURE	(Optional Entry)		
Ī	7	15.4	4.1	1.9		
ľ	14	21	6.9	2.8		
Ī	21	30	8.7	4.2		



		Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
	Ф	14-1062	1	N/A	SKK	8/15/14	SKK		14-1062-07eng.dat
	Δ	14-1062	2	N/A	SKK	8/15/14	SKK		14-1062-14eng.dat
		14-1062	3	N/A	SKK	8/15/14	SKK		14-1062-21eng.dat
1									

(NRC	S
	Natural	
	Resource	S
-	Conserva	tion
	Service	

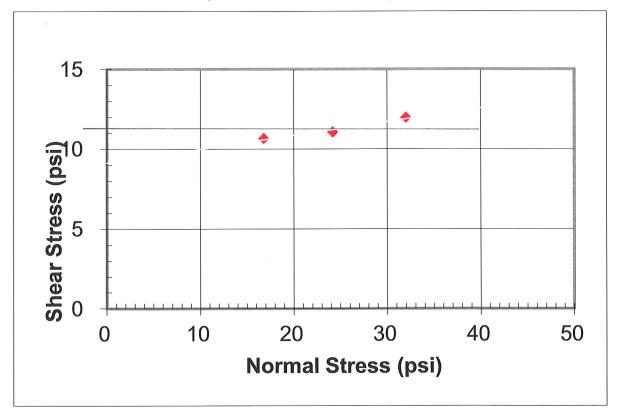
)	Project: PLUM CREEK SITE #6 DAI	//Location: TX	Project No.: 14-1062
	Boring No.: F14-104A	Sample Type: CORE	
,	Description: F14-104A		
•	Remarks:		

Mohr Circle Program

SITE NAME: Plum Creek Site #6

STATE:

Texas


SAMPLE NO: 14-1062 UU

	Tot	tal Strength Param	eters: Zero	Cohesion:			
	PHI:	4.9 degrees	4.9 degrees	Slope y=			
Failure Criterion:	C :	1317 psf	9.15 psi				
Maximum Dev. Stress	Eff	Effective Strength Parameters:					
Maximum Stress Ratio	PHI':	4.9 degrees	4.9 degrees	Slope y=			
Max. Pore Pressure	C':	1317 psf	9.15 psi				
✓ <= 10 % Strain	\$=00 Str	cess path analysi	s for Effective:				
Selected Points	ı	Alpha' :	4.9 degrees				
serested i sinte	C= 1623 P.A	a':	9.11 psi				

(All inputed values in the chart are in psi)

CELL PRESSURE	DEVIATOR STRESS	PORE PRESSURE	PERCENT STRAIN
	AT FAILURE	AT FAILURE	(Optional Entry)
7	21.4	0.001	10.0
14	22.2	0.001	10.0
21	24.0	0.001	10.0

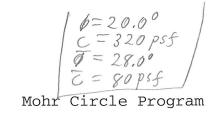
Backpressure Saturated UU - ϕ = 0°

UNCONSOLIDATED UNDRAINED TRIAXIAL TEST 30 Max. Shear c = 9.55 psi $\phi = 5.0$ $tan \phi = 0.09$ 20 ps. σ 10 0 50 60 10 20 40 30 p, psi Symbol Φ Δ 14-1062 14-1062 14-1062 Sample No. 35 Test No. 1 3 N/A N/A N/A Depth SKK SKK SKK Tested by 30 9/9/14 9/9/14 9/9/14 Test Date SKK SKK SKK Checked by 25 Check Date psi Diameter, in 1.395 1.398 1.394 DEVIATOR STRESS, Height, in 3.018 3.021 3.02 20 20.6 20.2 20.2 Water Content, % Dry Density, pcf 107.7 107.9 108.7 15 Saturation, % 96.3 98.1 98.1 Void Ratio 0.57 0.568 0.556 Confining Stress, psi 7 14 21 10 11.09 11.8 12.43 Undrained Strength, psi Max. Dev. Stress, psi 22.17 23.59 24.86 5 Strain at Failure, % 17.2 15.7 15.2 Strain Rate, %/min 1 1 1 Measured Specific Gravity 2.71 2.71 2.71 0 20 10 15 Liquid Limit VERTICAL STRAIN, % ___ Plastic Limit Plasticity Index Project: PLUM CREEK SITE #6 DAM Location: TX

Project: PLUM CREEK SITE #6 DAM

Location: TX

Project No.: 14–1062


Boring No.: F14–104A

Sample Type: CORE

Description: F14–104A

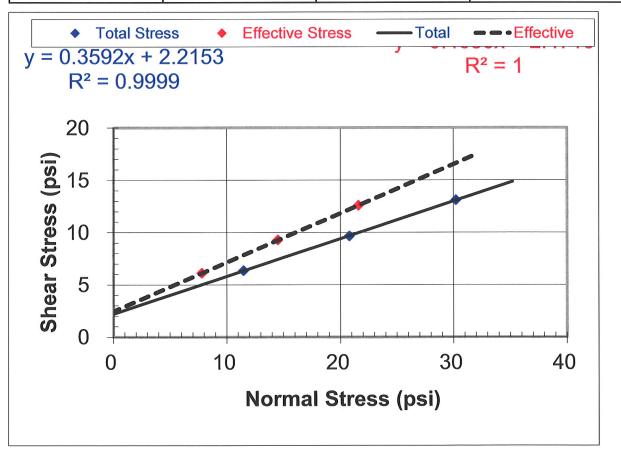
Remarks:

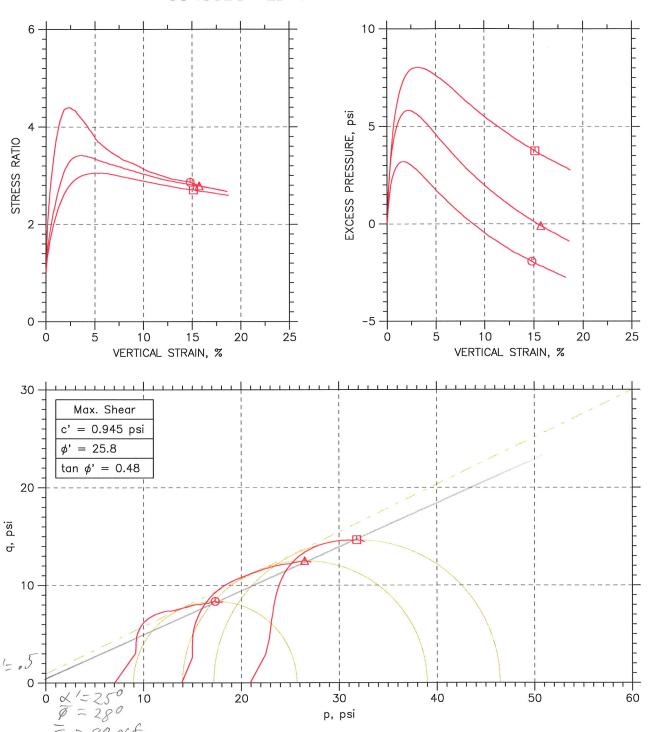
Phase calculations based on start and end of test.

SITE NAME: Plum Creek 6

STATE: Texas
SAMPLE NO: 14-1064

Total Strength Parameters: Zero Cohesion: Slope y= PHI: 19.8 degrees 19.8 degrees Failure Criterion: C: 319 psf 2.22 psi Effective Strength Parameters: Maximum Dev. Stress PHI': 25.1 degrees 25.1 degrees Slope y= ✓ Maximum Stress Ratio C': 2.47 psi **356** psf Max. Pore Pressure Stress path analysis for Effective: <= 15% Strain PHI': 28.0 degrees Selected Points

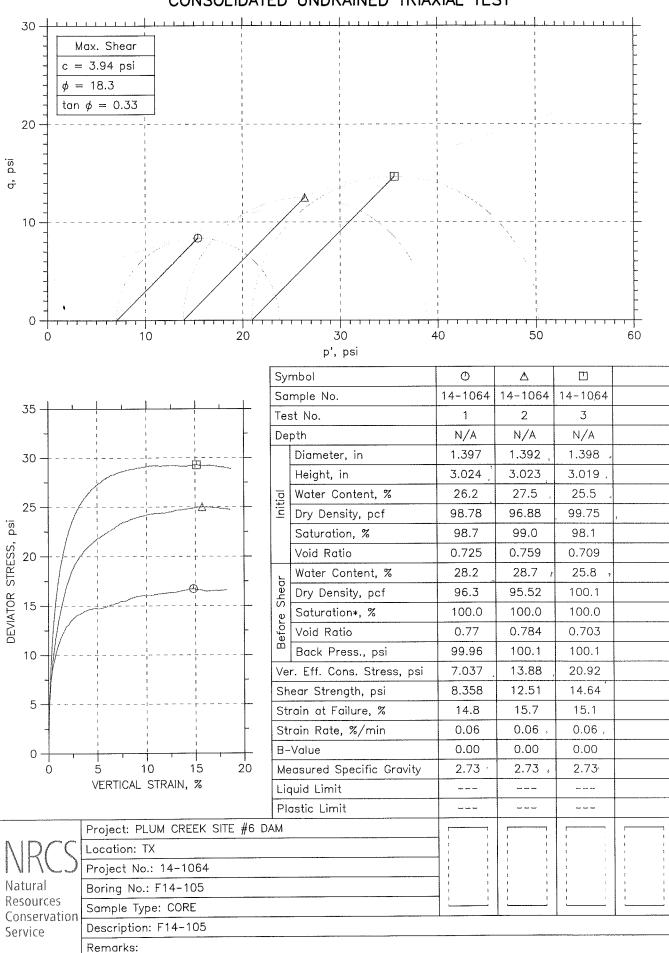

c':


80

psf

(All inputed values in the chart are in psi)

(All imputed values in the chart are in psi)					
CELL PRESSURE	DEVIATOR STRESS	PORE PRESSURE	PERCENT STRAIN		
	AT FAILURE	AT FAILURE	(Optional Entry)		
7	13.5	3.1	2.3		
14	20.5	5.4	3.6		
21	27.8	7.4	5.6		



	Sample No.	Test No.	Depth	Tested By	Test Date	Checked By	Check Date	Test File
0	14-1064	1	N/A	SKK	8/20/14	SKK		14-1064-07eng.dat
Δ	14-1064	2	N/A	SKK	8/20/14	SKK		14-1064-14eng.dat
	14-1064	3	N/A	SKK	8/20/14	SKK		14-1064-21eng.dat

2		RC	S	
	Nat	tural		
Resources				
Conservation				
	Ser	vice		

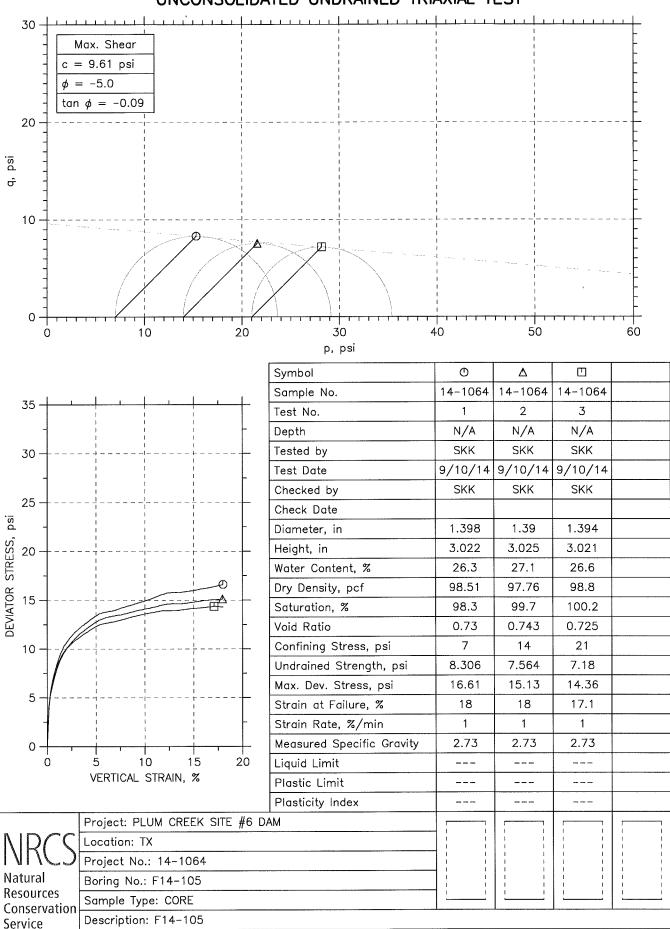
Project: PLUM CREEK SITE #6	DAMLocation: TX	Project No.: 14-1064	
Boring No.: F14-105	Sample Type: CORE		
Description: F14-105			
Remarks:			

SITE NAME: Plum Creek Site #6

STATE: Texas

SAMPLE NO: 14-1064 UU

		T	otal Stren	gth Param	eters:	Zer	co Cohesion:
		PHI:	-2.6	degrees		-2.6 degrees	Slope y=
Failure Criterion:		C :	1163			8.08 psi	
Maximum Dev. Stress		Е	ffective S	trength Pa	ramete	ers:	
Maximum Stress Ratio		PHI':	-2.6	degrees		-2.6 degrees	Slope y=
Max. Pore Pressure		C':	1163	psf		8.08 psi	
✓ <= 10 % Strain	\$= C)° S	tress pat	h analysi	s for	Effective:	
Colocted Points	·			Alpha' :		-2.6 degrees	
	C= 10	022 psf		a':		8.07 psi	


(All inputed values in the chart are in psi)

CELL PRESSURE	DEVIATOR STRESS	PORE PRESSURE	PERCENT STRAIN				
	AT FAILURE	AT FAILURE	(Optional Entry)				
7	14.9	0.001	10.0				
14	14.1	0.001	10.0				
21	13.6	0.001	10.0				

Backpressure Saturated UU - ϕ = 0°

UNCONSOLIDATED UNDRAINED TRIAXIAL TEST

Remarks:

Attachment 5

Permeability Test Data, 9 sheets

WORK ASSIGNMENT SHEET

FY: 14 Work Assignment No.: 113 DAM Date: 7/14/14 Target Date: 8/14/14 Assigned by: RM **OPERATION:** Permeability 2.8-inch or 4.0-inch Undisturbed LTS Entry: Work Completed by: Date: 9 Type: Rehab Recorded by: _____ Date: __ Fund: WRHB Plum Creek Site #6 Dam, TX Flexwall permeability test. Criteria: These tests will be run only if the requested shear testing on samples 14-1059 and 1062 are completed. NO Index on these samples - same as 1059 and 1062 - respecitively. Route sheet along with samples to perm run at the completion of shear testing. REGULATED. Page 1 Gs = 2.7/ $\gamma d =$ 14-1060 (Cores) Day: 15 k= Day: k= Day: Gs = 2.68 14-1063 (Cores) yd =

Day: 15

Day:

Day:

k=

k=

U.S. Department of Agriculture Natural Resources Conservation Service

Sheet _1__ of _3__

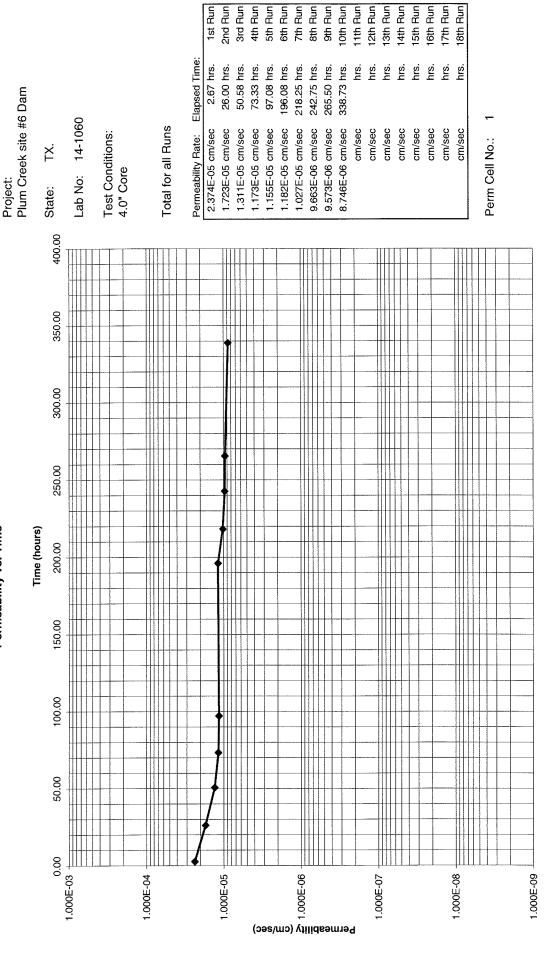
4/20/11		TEXAS (WF-07)						Gr	ain Siz	e Distr	ibution	Mecha Expre	nical <i>A</i> ssed a	Analysis s Perce	ent Fine	er by D	ry Weig	jht		Atter Lin		Unified Classification	1 hr	% L	Re	sture-De elationsl Standa	nips ard	Undist Sample				Speci	al Tests
Lab. Sample No.	Field Number	Location and Description	Sample Type	Depth			Fines				<u> </u>	T	and T					Gra				d Classi	Crumb - 1	Dispersion		Modifie Max		2/		Gs			
14-		Plum Creek Site 6 (Hays County)	m Creek Site 6 ft.	Dis	Curve No.	$\begin{array}{c} \gamma_{\text{d}} \\ \text{p.c.f.} \end{array}$	w ₀ %	γ _d p.c.f.	w _N %																								
1057	1.1	F14-94	Core		48	66	89	94	98					100						63	44	СН	1					102.7	22.4	2.71			o = 23.0°
		For CU'																													1	CU'	c = 155 psf o' = 28.0°
																												w _{Sat} =	23.9			Ċ	c' = 130 psf
																																	o = 0.0° c = 1440 psf
1058	2.1	F14-97	Core		47	65	87	92	94					100						56	40	СН	1					103.5	21.5	2.71	<u> </u>		o = 22.5° c = 195 psf
		For CU'	+																									w _{Sat} =	23.4				b' = 28.0° b' = 165 psf
																																1111	$0 = 0.0^{\circ}$ 0 = 950 psf
1059	3.1	F14-101 A	Core		50	64	86	92	96		_		_	100						58	42	СН	1					100.9	23.3	2.72		ارين ک	o = 21.0° c = 185 psf
		For CU'																										w _{Sat} =	25.1	\vdash			o' = 25.0° c' = 110 psf
																												••Sal	20.1			1111	o = 0.0°
																																00 6	= 1140 psf
1060	3.1	F14-101 C	Core																									94.9	22.5	2.71		Perm	eability cm/
		For Permeability																														k	8.7x10 ⁻⁶
		Back up to 101 A																										w _{Sat} =	28.9				
1061	3.2	F14-102 A	Core		70	91	100													72	49	СН	1					100.2	24.6	2.73			o = 28.0°
		For CU'																														ο' =	= 325 psf b' = 44.0°
																												w _{Sat} =	25.7			c' = 0 ps	
																																UU	o = 0.0° c = 1455 psf
					-	 																								igwdapprox			

Date Reported: _____ Initials: ____

U.S. Department of Agriculture Natural Resources Conservation Service

Sheet _2__ of _3__

4/20/11		TEXAS (WF-07)						Gı	ain Siz	e Distr	ibutior	Mecha Expre	anical A	Analysis s Perce	s ent Fin	er by D	ry Wei	ght					rberg mits	Unified Classification	hr	% L	Re	sture-Delations Standa	hips ard	Undisi Sampl	turbed e Data			Spec	cial Tes	sts
Lab. Sample No.	Field Number	Location and Description	Sample Type	Depth			Fines	1				1	and						avel	I				d Class			Curve No Yd Wo 9			2/		Gs				
14-		Plum Creek Site 6 (Hays County)		ft.	0.002 mm	0.005 mm	0.02 mm	0.05 mm	#200 0.074 mm	#140 0.105 mm	#60 0.250 mm	#40 0.42 mm	#20 0.84 mm	#10 2.0 mm	#4 4.76 mm	3/8" 9.525 mm	1/2" 12.7 mm	3/4" 19.05 mm	1" 25.4 mm	1 1/2" 38.1 mm	3" 76.2 mm	L.L.	P.I.	Unified	ပ်	Dis	Curve No.	$\begin{array}{c} \gamma_{\text{d}} \\ \text{p.c.f.} \end{array}$	w ₀ %	γ _d p.c.f.	w _N %					
1062	304	F14-104 A	Core		45	55	74	80	85					100	1							52	35	СН	1					106.7	20.9	2.71			φ = 20	
		For CU'																																CU'	c = 37 $\phi' = 28$	75 psf 8 ∩∘
																														w _{Sat} =	21.6			ľ	c' = 10	65 psf
																																		- UU	φ = 0.0	0°
																																				625 psf
1063	304	F14-104 B	Core																											101.7	20.6	2.68		Perr	neab	ility cm/s
		For Permeability																																k		8x10 ⁻⁶
		Backup to 104 A																												w _{Sat} =	24.0					
						1																						1								
1064	304	F14-105	Core		52	66	84	92	97					100								64	46	СН	1			1		98.5	26.4	2.73			φ = 20).0°
		For CU'			 									100											-					00.0			1	CU'	c = 32	20 psf
																														w _{Sat} =	26.7			$\phi' = 28$ $c' = 80$	3.0° 0 psf	
			1																															+ +		
						1																												UU	c = 10	0° 020 psf
						<u> </u>																	1													
																												1								_
			+		1																							1								
			+																																	
			+		1	1																	1					1							-	
					<u> </u>	 						1											1					 					 	+		+
																																				_
			+		1	1																						1					<u> </u>			
			+		 	+						1											1					 					<u> </u>			+
					+	1																						1					 			_
					 	 						-		1									-					1	1				 	\vdash		+
					 	 										-																<u> </u>	<u> </u>	\vdash		
					1							1										<u> </u>	<u> </u>					1					<u> </u>	\sqcup	\dashv	
					<u> </u>	 								1		1												1	1		-		<u> </u>	\sqcup		\bot
					1																	<u> </u>	1					1					<u> </u>	\bigsqcup		

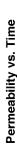

Date Reported: _____ Initials: ____

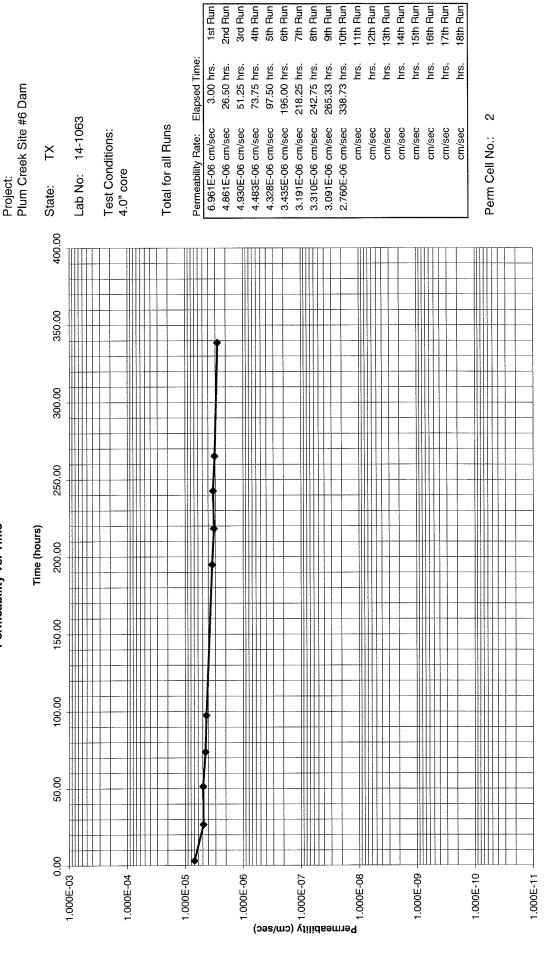
Project:	Plum Creek site #6 Dam TX.			
State: Lab No:	14-1060			
Test Conditions: Additional Information:	4.0" Core			
Specific Gravity (Gs):	2.71			
Maximum Dry Density:	94.9 pcf			
Optimum Moisture:	22.5 percent			
Perm Cell No.:	1 , , ,			
Additive Type and Rate:	lbs/sq.ft. of	End Area:	11.642 sq. inc	hes
Initial Average Diameter of Specimen: Initial Average Height of Specimen:	3.850 inches 3.355 inches	Volume of Specimen:	39.058 cubic i	
Initial Moist Weight of Specimen:	1191.14 gms.	Moist Unit Weight:	116.18 pcf	
Thinks Holes Cong. To Epotember 1	_		on factor to convert gms/cubic	inch to pcf)
Initial Cell Burette Reading Before Backpressure:	3.00			
Cell Burette Reading After Backpressure:	11.40			
Cell Pressure After Backpressure: Cell Burette After Equalization:	103.0 psi 14.00			Gradient
Cell Pressure After Equalization:	105.0 psi			Pressure
Controductor mor Equalization		Date/time:	Total per	Total Diff.:
Average Permeability (k) for each run:		Start End	Each Run:	Elapsed Time: (psi)
1st Run	2.374E-05 cm/sec		4 9:40 AM 2.67 hrs.	2.67 hrs.
2nd Run			4 9:00 AM 23.33 hrs.	26.00 hrs.
3rd Run			14 9:35 AM 24.58 hrs.	50.58 hrs.
4th Run			14 8:20 AM 22.75 hrs. 14 8:05 AM 23.75 hrs.	73.33 hrs. 97.08 hrs.
5th Aur 6th Rur			14 8:05 AM 23.75 hrs. 1 11:05 AM 99.00 hrs.	196.08 hrs.
7th Rur			14 9:15 AM 22.17 hrs.	218.25 hrs.
8th Rur			14 9:45 AM 24.50 hrs.	242.75 hrs.
9th Rur	9.573E-06 cm/sec	9/4/14 9:45 AM 9/5/1	14 8:30 AM 22.75 hrs.	265.50 hrs.
10th Run		9/5/14 8:30 AM 9/8/1	14 9:44 AM 73.23 hrs.	338.73 hrs.
11th Rur			hrs.	hrs.
12th Rur 13th Rur			hrs. hrs,	hrs. hrs.
13th Rui 14th Rur			hrs.	hrs.
15th Rur			hrs.	hrs.
16th Rur			hrs.	hrs.
17th Rur	cm/sec		hrs.	hrs.
18th Rur	cm/sec	Note:	hrs.	hrs.
Ambient Water Temperature (nearest 0.5 deg):	22.5 deg.Celcius	-Start and End Times based on - Elapsed Time based on the acc		
Recorded Permeability:	8.749E-06 cm/sec	continuous or not. -Average Permeability is based		
Final Cell Pressure for the Recorded Perm:	105.0 psi	•	-	
Final Base Pressure for the Recorded Perm:	100.0 psi	(Use only the External Burette for the	e Cell Reading)	
Final Gradient Pressure Difference:	psi	Initial Cell Burette Reading Before	Backpressure:	3.00
		Final Cell Burette Reading After C		11.40
Final Moist Weight of Specimen+Container:	1428.18 gms.	Cell Burette Reading for Recorded		4 = 40
Final Dry Weight of Specimen+Container:	1158.26 gms.	Final Cell Burette Reading for Rec Estimated Correction for Compres		15.70 6.78
Weight of Container:	185.69 gms. 269.92 gms.	Estimated Initial/Final Cell Burette		17.32
Weight of Water: Weight of Dry Specimen:	972.57 gms.	Estimated Unital/Final Cell Burette		5.92
	· ·			
Initial Dry Density: Percent of Maximum Dry Density:	94.86 pcf 100.00 %	Estimated Final Volume Change of	of Burette:	1.283 cubic inches
Initial Percent Moisture in Ref. to Optimum:	0.00 %	Estimated Final Volume of the Sp		37.775 cubic inches
·				
Final Dry Density:	94.86 pcf	Estimated Final Dry Density:		98.08 pcf
Percent of Maximum Dry Density: Final Percent Moisture in Ref. to Optimum:	100.00 % 5.28 %	Percent of Maximum Dry Density:	•	103.40 %
Final Percent Moisture in Her. to Optimum.	5.20 /6	Note: The Specimen is not directly	v measured to achieve the	Final Dry Density.
Initial Water Content:	22.47 percent		Difference in Volume of the	
Final Water Content:	27.75 percent		inal Dry Density. This Volur	
Saturated Moisture:	28.88 percent		e test for the Recorded Per	
Initial Percent Saturated:	77.81 %	of the Specimen may occu	r when the pressure is rele	ased.
Final Percent Saturated:	96.10 %	Final Measured Average Diamete	er of Specimen	inches
Note: Initial and Final Densities are considered to be t	ne same	Final Measured Average Height o		inches
unless the Cell Burette Volume is monitered.			•	

Checked by: LLS

unless the Cell Burette Volume is monitered.

Permeability vs. Time




Project:	10th Run Plum Creek site #6	3 Dam			9/9/2014 12:17 PM
State:	TX.				
Lab No:	14-1060				
Test Conditions: Additional Information:	4.0" Core				
Perm Cell No.:		1			
Initial Average Diameter of Specimen:		50 inches			
Initial Average Height of Specimen:		55 inches			
Cross-Sectional End Area of the Specimen: 10th Run		42 sq. inches			•
Cell Pressure:		5.0 psi			
Base Pressure:).0 psi			
Gradient Pressure Difference:		psi			
Initial Cell Burette Reading for this Run:	15.	70 used to det	ermine Swink	or Swell Poter	ntial)
Ambient Water Temperature (nearest 0.5 deg):	22	2.5 deg.Celcius	0.942	Correction F	actor (R _T)
Is the Large Burette being Used?	YF	ES (yes or no)			
Calibrated Area of the Inlet Burette:		10 sq. cm			
Calibrated Area of the Outlet Burette:		80 sq. cm	•		
Calibrated Area of the Large Inlet Burette:		80 sq. cm			
Calibrated Area of the Large Outlet Burette:		70 sq. cm			
Day of Run (ie Day 1, Day 2, Day 3 etc.):	DAY 15				
Date/time for the entire run (exact format needed):	9/5/14 8:30 A	M Start			
9/9/14 12:06 PM		M End (At the L	ast Recorded	Reading for	this Run)
Total Running Time per Run:		23 hrs. `		_	·
	Start and End Times	s based on the sta	rt and end of e	each days run.	
	Readings:				
	1st	2nd	3rd	4th	note:
Initial Cell Burette Reading of Inlet:	0.70	0.82	0.94	1.06	After the 4th Reading,
Initial Cell Burette Reading of Outlet:		9.28	9.16	9.04	the 1st Readings are
Final Cell Burette Reading of Inlet:		0.94	1.06	1.17	replaced by the 2nd
Final Cell Burette Reading of Outlet:		9.16	9.04	8.93	Readings and so forth.
Time Between Readings (min.):		10	10	10	Then the new 4th
Total Elapsed Time (min):		20	30	40	Readings can be inputed.
Cross-Sectional Area of the Input Burette a in (sq. cm)	3.429780	3.429780	3.429780	3.429780	
Cross-Sectional Area of the Outlet Burette a out (sq. cm)		3.434870	3.434870	3.434870	
Length of Specimen L (cm)		8.522	8.522	8.522	
Cross-Sectional End Area of Specimen A (sq. cm)		75.107 600	75.107 600	75.107 600	
Time elapsed between determinations t (sec) Head loss across the specimen at time $t h_1$ (cm)		43.1839	41.9578	40.7318	
Head loss across the specimen at time t_2/h_2 (cm)		41.9578	40.7318	39.6078	
Falling Head Permeability K (cm/sec):	9.086E-06	9.347E-06	9.625E-06	9.081E-06	
Corrected Falling Head Permeability K (cm/sec):	8.559E-06	8.805E-06	9.066E-06	8.554E-06	
(corrected for temperature at 20 deg. Celcius			-		-
Average K:	9.285E-06) for Computation of K)
Average Corrected K:	8.746E-06	cm/sec (Ave	•	_	XHI)
Ratio of K to the Average K:	0.979	1.007	1.037	0.978	
	Ratio of K should be	e between 0.75 an	d 1.25 if Avera	age K > 1.0 x 1	0 ⁻⁸ cm/sec.
	Ratio of K should be	e between 0.50 an	d 1.50 if Avera	ige K < 1.0 x 1	0 ⁻⁸ cm/sec.
	Also the plot of K vs	s. Time shows no s	significant upw	ard or downw	ard trend.
Volume of Inflow (ml):	2.104	2.104	2.104	1.929	Total: 8.241
Volume of Outflow (ml):	2.104	2.104	2.104	1.929	Total: 8.242
Outflow / Inflow:	1.000	1.000	1.000	1.000	Average: 1.000
Samon, milem	Ratio of Outflow/Infl			1.25.	
Head to a 200 in heat we are time at and to (am):		1.2261	1.2261	1.1239	
Head Loss/Gain between time t and t ₂ (cm):	1.2261 2.84%	2.92%	3.01%	2.84%	
Ratio of Head Loss Initial to Final for each Reading: Head Loss as compared to the Initial Head:	2.84% 0.97	2.92% 0.94	0.92	0.89	
Head Loss as compared to the initial Head.	For soft compressib	ole specimens may	need to keep	initial final he	a d loss < +-5%.
Late at the advanced in Concept and	5.211	5.068	4.924	4.780	
Initial Hydraulic Gradient:	5.211 5.068	5.068 4.924	4.924 4.780	4.780 4.648	
Final Hydraulic Gradient:	_				1 = 04/22
ASTM Suggested Maximum Hydraulic Gradients	s: 2 5	for K rates of for K rates of	1.E-03 1.E-04	cm/sec to cm/sec to	1.E-04 cm/sec 1.E-05 cm/sec
	5 10	for K rates of	1.E-04 1.E-05	cm/sec to	1.E-06 cm/sec
	20	for K rates of	1.E-06	cm/sec to	1.E-07 cm/sec
	30	for K rates of	1.E-07	cm/sec or less	6
				draulia aradian	

For soft compressible specimens may need to use an hydraulic gradient less then 10.

Project:	Plum Creek Site #6 Dam	
State:	TX	
Lab No:	14-1063	
Test Conditions:	4.0" core	
Additional Information:		
Specific Gravity (Gs):	2.68	
Maximum Dry Density:	101.7 pcf	
Optimum Moisture:	20.6 percent	
Perm Cell No.: Additive Type and Rate:	2 lbs/sq.ft. of	
Initial Average Diameter of Specimen:	3.821 inches	End Area: 11.467 sq. inches
Initial Average Height of Specimen:	4.002 inches	Volume of Specimen: 45.890 cubic inches
Initial Moist Weight of Specimen:	1477.14 gms.	Moist Unit Weight: 122.62 pcf
L W LOUID THE DATE OF THE PROPERTY.	0.00	3.8095 (multiplication factor to convert gms/cubic inch to pcf)
Initial Cell Burette Reading Before Backpressure: Cell Burette Reading After Backpressure:	3.00 13.30	
Cell Pressure After Backpressure:	103.0 psi	
Cell Burette After Equalization:	14.30	Gradient
Cell Pressure After Equalization:	105.0 psi	Pressure
		Date/time: Total per Total Diff.:
Average Permeability (k) for each run:		Start End Each Run: Elapsed Time: (psi)
1st Run		8/25/14 7:00 AM 8/25/14 10:00 AM 3.00 hrs. 3.00 hrs.
2nd Rur 3rd Rur		8/25/14 10:00 AM 8/26/14 9:30 AM 23.50 hrs. 26.50 hrs. 8/26/14 9:30 AM 8/27/14 10:15 AM 24.75 hrs. 51.25 hrs.
3ra Hur 4th Rur		8/27/14 10:15 AM 8/28/14 8:45 AM 22.50 hrs. 73.75 hrs.
5th Run		8/28/14 8:45 AM 8/29/14 8:30 AM 23.75 hrs. 97.50 hrs.
6th Run		8/29/14 8:30 AM 9/2/14 10:00 AM 97.50 hrs. 195.00 hrs.
7th Run		9/2/14 10:00 AM 9/3/14 9:15 AM 23.25 hrs. 218.25 hrs.
8th Run		9/3/14 9:15 AM 9/4/14 9:45 AM 24.50 hrs. 242.75 hrs. 9/4/14 9:45 AM 9/5/14 8:20 AM 22.58 hrs. 265.33 hrs.
9th Rur 10th Rur		9/4/14 9:45 AM 9/5/14 8:20 AM 22.58 hrs. 265.33 hrs. 9/5/14 8:20 AM 9/8/14 9:44 AM 73.40 hrs. 338.73 hrs.
11th Rur		hrs. hrs.
12th Rur		hrs. hrs.
13th Run	cm/sec	hrs. hrs.
14th Run		hrs. hrs.
15th Run		hrs. hrs.
16th Rur 17th Rur		hrs. hrs. hrs. hrs.
18th Rur		hrs. hrs.
		Note:
Ambient Water Temperature (nearest 0.5 deg):	22.5 deg.Celcius	-Start and End Times based on the start and end of each days run.
Recorded Permeability:	2.760E-06 cm/sec	 -Elapsed Time based on the accumulation of each run whether continuous or not.
necorded refineability.	2.7001-00 011/300	-Average Permeability is based on four readings within parameters.
Final Cell Pressure for the Recorded Perm:	105.0 psi	
Final Base Pressure for the Recorded Perm:	100.0 psi	(Use only the External Burette for the Cell Reading)
Final Gradient Pressure Difference:	psi	Initial Cell Burette Reading Before Backpressure: 3.00
		Final Cell Burette Reading After Cell is Tore Down: 10.90
Final Moist Weight of Specimen+Container:	1698.77 gms.	Cell Burette Reading for Recorded Perm Result: 7.90
Final Dry Weight of Specimen+Container:	1401.90 gms.	Final Cell Burette Reading for Recorded Perm Result: 14.90 Estimated Correction for Compressed Water: 6.97
Weight of Container: Weight of Water:	176.72 gms. 296.87 gms.	Estimated Correction for Compressed Water. 6.97 Estimated Initial/Final Cell Burette Reading: 7.93
Weight of Dry Specimen:	1225.18 gms.	Estimated Consolidation at the End of the Test: -2.97
Initial Dry Density:	101.71 pcf	
Percent of Maximum Dry Density:	100.00 %	Estimated Final Volume Change of Burette: -0.626 cubic inches
Initial Percent Moisture in Ref. to Optimum:	0.00 %	Estimated Final Volume of the Specimen: 46.517 cubic inches
•	404.74(Fall water difficult Day Days they
Final Dry Density:	101.71 pcf	Estimated Final Dry Density: 100.34 pcf Percent of Maximum Dry Density: 98.65 %
Percent of Maximum Dry Density: Final Percent Moisture in Ref. to Optimum:	100.00 % 3.66 %	Percent of Maximum Dry Density: 98.65 %
Take Totolic moleculo in Alon to Optimum.	0.00 /0	Note: The Specimen is not directly measured to achieve the Final Dry Density,
Initial Water Content:	20.57 percent	but is measured from the Difference in Volume of the Cell Burette
Final Water Content:	24.23 percent	to achieve an Estimated Final Dry Density. This Volume is assumed
Saturated Moisture:	24.04 percent	to be the Volume during the test for the Recorded Perm Result. Rebound
Initial Percent Saturated: Final Percent Saturated:	85.55 % 100.79 %	of the Specimen may occur when the pressure is released.
FINAL FEICENT GATUIATEU.	100.18 %	Final Measured Average Diameter of Specimen: inches
Note: Initial and Final Densities are considered to be the	ne same	Final Measured Average Height of Specimen: inches
unless the Cell Burette Volume is monitered.		

Checked by: LLS

cm/sec

20

30

for K rates of

1.E-07

For soft compressible specimens may need to use an hydraulic gradient less then 10.

cm/sec or less